1. In this problem we consider a heat engine functioning via a four-step thermody cycle known as the Otto cycle. This cycle is an idealization of the operation of a gasoline engine or any other engine with spark plugs (note that the steps of the four-step cycle here should not be confused with the strokes of a four-stroke engine). = 0.500 L, PA = - - In Step 1 the gas in a cylinder undergoes a feversible adiabatic compression from an initial state with VA 1 bar, TA 300 K to volume VB (compression ratio = VA/VB = 10.8). In Step 2, the gas is reversibly heated at constant volume Vc = VB to To = 3000 K (this step approximates the heating of the gas due to the spark-initiated combustion of fuel injected prior to Step 1, with To being a reasonable guess at the temperature of the flame). In Step 3 the gas performs work by reversible adiabatic ex- pansion back to the original volume V₁. In the final step, the gas returns to the original pressure and temperature at constant volume (this step represents expunging the heat from the engine by refilling it with fresh cold air-fuel mixture). Assume that we have a diatomic ideal gas with temperature-independent heat capacity Cv = nR. (a) Sketch the steps of the process on a p V diagram and calculate volume (L) and pressure (bar) for every state in the process. Assume that the amount of gas stays con- stant throughout the cycle. (b) Calculate the work (w), heat (g) and change in internal energy (AU) in each step of the cycle. (c) Calculate the thermal efficiency of this engine as the ratio of the total work done by the engine through the complete cycle to the amount of heat received from combustion in Step 2. (d) The parameters in this problem are taken from the published technical specs of the 4- cylinder 2L engine (2./4=0.5) of 2016 Honda Civic LX rated to generate 158 horsepower @ 6500 rpm (= 6500 rotations of engine crankshaft per minute). Compute the total power produced by our model of this engine (power = work / time) and compare to the actual data from Honda. Assume that a complete cycle occurs every 2 crankshaft
1. In this problem we consider a heat engine functioning via a four-step thermody cycle known as the Otto cycle. This cycle is an idealization of the operation of a gasoline engine or any other engine with spark plugs (note that the steps of the four-step cycle here should not be confused with the strokes of a four-stroke engine). = 0.500 L, PA = - - In Step 1 the gas in a cylinder undergoes a feversible adiabatic compression from an initial state with VA 1 bar, TA 300 K to volume VB (compression ratio = VA/VB = 10.8). In Step 2, the gas is reversibly heated at constant volume Vc = VB to To = 3000 K (this step approximates the heating of the gas due to the spark-initiated combustion of fuel injected prior to Step 1, with To being a reasonable guess at the temperature of the flame). In Step 3 the gas performs work by reversible adiabatic ex- pansion back to the original volume V₁. In the final step, the gas returns to the original pressure and temperature at constant volume (this step represents expunging the heat from the engine by refilling it with fresh cold air-fuel mixture). Assume that we have a diatomic ideal gas with temperature-independent heat capacity Cv = nR. (a) Sketch the steps of the process on a p V diagram and calculate volume (L) and pressure (bar) for every state in the process. Assume that the amount of gas stays con- stant throughout the cycle. (b) Calculate the work (w), heat (g) and change in internal energy (AU) in each step of the cycle. (c) Calculate the thermal efficiency of this engine as the ratio of the total work done by the engine through the complete cycle to the amount of heat received from combustion in Step 2. (d) The parameters in this problem are taken from the published technical specs of the 4- cylinder 2L engine (2./4=0.5) of 2016 Honda Civic LX rated to generate 158 horsepower @ 6500 rpm (= 6500 rotations of engine crankshaft per minute). Compute the total power produced by our model of this engine (power = work / time) and compare to the actual data from Honda. Assume that a complete cycle occurs every 2 crankshaft
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 7 steps with 7 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY