Cardiac pacemakers are used by people to maintain regular heart rhythm when they have a damaged heart. The circuit of a pacemaker can be represented as. The resistance of the wires, R, can be neglected since R < 1 mΩ. The heart's load resistance, RL, is 1 kΩ. The first switch is activated at t = t0, and the second switch is activated at t1 = t0 + 10 ms. This cycle is repeated every second. Find v(t) for t0 ≤ t ≤ 1. Note that it is easiest to consider t0 = 0 for this calculation. The cycle repeats by switch 1 returning to position a and switch 2 returning to its open position.
Sinusoids And Phasors
Sinusoids are defined as the mathematical waveforms that are used to describe the nature of periodic oscillations.
Circuit Theory
Electric circuits are a network that comprises of a closed-loop, which helps in providing a return path for the current through a switch. When the switch is activated, the load operates, and the current accepts a path to finish the circuit at a low potential level from the opposing high potential level. Electric circuits theory is a linear analysis that helps in establishing a linear relation of voltage and current for R (resistance), L (inductance), and C (capacitance).
Cardiac pacemakers are used by people to maintain regular heart rhythm when they have a damaged heart. The circuit of a pacemaker can be represented as. The resistance of the wires, R, can be neglected since R < 1 mΩ. The heart's load resistance, RL, is 1 kΩ. The first switch is activated at t = t0, and the second switch is activated at t1 = t0 + 10 ms. This cycle is repeated every second. Find v(t) for t0 ≤ t ≤ 1. Note that it is easiest to consider t0 = 0 for this calculation. The cycle repeats by switch 1 returning to position a and switch 2 returning to its open position. Answer: 0.6e−2(t-0.1) V
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images