A series of experiments was conducted for a ship model of 3-ft length in a water tank. The relevant variables are the length of the model, L, water density, p, tawing velocity, V, the viscosity, μ, and the gravitational acceleration, g. The experimental result was

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.8P
icon
Related questions
Question
Please solve for all with a clear explanation ( fluid mechanics)
1. A series of experiments was conducted for a ship model of 3-ft length in a water
tank. The relevant variables are the length of the model, L, water density, p, tawing
velocity, V, the viscosity, µ, and the gravitational acceleration, g. The experimental
result was
V (ft/s) 10
20
D (lbf) 0.022 0.079
50
30 40
0.169 0.281 0.45
=
60
0.618
70
0.731
The full-size ship is 150 ft long and designed to cruise at 15 knots and 20 knots in a
freshwater lake (1 knot = 1.68781 ft/s).
a. How many dimensionless groups can be obtained? Why?
b. Use dimensional analysis to prove that the functional relationship of the drag
force D=f(p, V, L, g, µ) can be simplified to Cd=f(Fr, Re), where
D
V
Ca
-, Fr=
PVL
Re=
√gL
μl
PV²12
c.
If the drag coefficient and Fr number are conserved, estimate the drag force
for the full-size ship at the two cruising velocities.
d. If the drag coefficient and Re number are conserved, estimate the drag force
for the full-size ship at the two cruising velocities.
Transcribed Image Text:1. A series of experiments was conducted for a ship model of 3-ft length in a water tank. The relevant variables are the length of the model, L, water density, p, tawing velocity, V, the viscosity, µ, and the gravitational acceleration, g. The experimental result was V (ft/s) 10 20 D (lbf) 0.022 0.079 50 30 40 0.169 0.281 0.45 = 60 0.618 70 0.731 The full-size ship is 150 ft long and designed to cruise at 15 knots and 20 knots in a freshwater lake (1 knot = 1.68781 ft/s). a. How many dimensionless groups can be obtained? Why? b. Use dimensional analysis to prove that the functional relationship of the drag force D=f(p, V, L, g, µ) can be simplified to Cd=f(Fr, Re), where D V Ca -, Fr= PVL Re= √gL μl PV²12 c. If the drag coefficient and Fr number are conserved, estimate the drag force for the full-size ship at the two cruising velocities. d. If the drag coefficient and Re number are conserved, estimate the drag force for the full-size ship at the two cruising velocities.
Expert Solution
steps

Step by step

Solved in 8 steps with 13 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

can you please do the quadratic interpolaton on paper so I can see how you did it 

Solution
Bartleby Expert
SEE SOLUTION
Follow-up Question

Can you please show how you got the quadratic interpolation please 

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning