Can you Modify this code To do a IDA* Search The output should be the same as this code. import psutil import time from collections import deque from heapq import heappush, heappop from typing import List, Tuple classSearch: defgoal_test(self, cur_tiles): return cur_tiles == ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '0'] defmanhattan_distance(self, tiles: List[str]) -> int: # Calculate the manhattan distance heuristic for a given state h = 0 i = 0 while i < 16: if tiles[i] != '0': x, y = divmod(i, 4) j = int(tiles[i])-1 u, v = divmod(j, 4) h += abs(x - u) + abs(y - v) i += 1 return h defmisplaced_tiles(self, tiles: List[str]) -> int: # Calculate the misplaced tiles heuristic for a given state h = 0 i = 0 while i < 16: if tiles[i] != '0' and tiles[i] != str(i+1): h += 1 i += 1 return h defget_successors(self, tiles: List[str]) -> List[Tuple[List[str], str]]: # Generate all possible successor states and corresponding actions successors = [] i = tiles.index('0') while i % 4 > 0: # Move the blank tile left new_tiles = tiles[:] new_tiles[i], new_tiles[i-1] = new_tiles[i-1], new_tiles[i] successors.append((new_tiles, 'L')) i -= 1 i = tiles.index('0') while i % 4 < 3: # Move the blank tile right new_tiles = tiles[:] new_tiles[i], new_tiles[i+1] = new_tiles[i+1], new_tiles[i] successors.append((new_tiles, 'R')) i += 1 i = tiles.index('0') while i // 4 > 0: # Move the blank tile up new_tiles = tiles[:] new_tiles[i], new_tiles[i-4] = new_tiles[i-4], new_tiles[i] successors.append((new_tiles, 'U')) i -= 4 i = tiles.index('0') while i // 4 < 3: # Move the blank tile down new_tiles = tiles[:] new_tiles[i], new_tiles[i+4] = new_tiles[i+4], new_tiles[i] successors.append((new_tiles, 'D')) i += 4 return successors defrun_iddfs_manhattan_distance(self, initial_state: List[str], max_depth: int) -> Tuple[List[str], int]: # Run IDDFS algorithm with manhattan distance heuristic function for depth in range(max_depth + 1): result = self.dls_manhattan_distance(initial_state, depth) if result is not None: return result defdls_manhattan_distance(self, state: List[str], depth: int): # Recursive function for depth-limited search with manhattan distance heuristic if depth == 0 and self.goal_test(state): return ([], 0) elif depth > 0: for successor, action in self.get_successors(state): h = self.manhattan_distance(successor) result = self.dls_manhattan_distance(successor, depth - 1) if result is not None: path, num_expanded = result return ([action] + path, num_expanded + 1) returnNone defrun_iddfs_misplaced_tiles(self, initial_state: List[str], max_depth: int) -> Tuple[List[str], int]: # Run IDDFS algorithm with misplaced tiles heuristic function for depth in range(max_depth + 1): result = self.dls_misplaced_tiles(initial_state, depth) if result is not None: return result defdls_misplaced_tiles(self, state: List[str], depth: int): # Recursive function for depth-limited search with misplaced tiles heuristic if depth == 0 and self.goal_test(state): return ([], 0) elif depth > 0: for successor, action in self.get_successors(state): h = self.misplaced_tiles(successor) result = self.dls_misplaced_tiles(successor, depth - 1) if result is not None: path, num_expanded = result return ([action] + path, num_expanded + 1) returnNone defsolve(self, initial_state, heuristic="manhattan", max_depth=50): initial_list = initial_state.split(" ") start_time = time.perf_counter() if heuristic == "manhattan": path, num_expanded = self.run_iddfs_manhattan_distance(initial_list, max_depth) elif heuristic == "misplaced tiles": path, num_expanded = self.run_iddfs_misplaced_tiles(initial_list, max_depth) end_time = time.perf_counter() elapsed_time = end_time - start_time memory_usage = psutil.Process().memory_info().rss print("Moves: " + " ".join(path)) print("Number of expanded Nodes: " + str(num_expanded)) print("Time Taken: " + str(elapsed_time)) print("Max Memory (Bytes): " + str(memory_usage)) return "".join(path) # USE THE README CODE TO RUN THE PROGRAM. # if __name__ == '__main__': # agent = Search() # agent.solve("1 0 2 4 5 7 3 8 9 6 11 12 13 10 14 15")
Can you Modify this code To do a IDA* Search The output should be the same as this code. import psutil import time from collections import deque from heapq import heappush, heappop from typing import List, Tuple classSearch: defgoal_test(self, cur_tiles): return cur_tiles == ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '0'] defmanhattan_distance(self, tiles: List[str]) -> int: # Calculate the manhattan distance heuristic for a given state h = 0 i = 0 while i < 16: if tiles[i] != '0': x, y = divmod(i, 4) j = int(tiles[i])-1 u, v = divmod(j, 4) h += abs(x - u) + abs(y - v) i += 1 return h defmisplaced_tiles(self, tiles: List[str]) -> int: # Calculate the misplaced tiles heuristic for a given state h = 0 i = 0 while i < 16: if tiles[i] != '0' and tiles[i] != str(i+1): h += 1 i += 1 return h defget_successors(self, tiles: List[str]) -> List[Tuple[List[str], str]]: # Generate all possible successor states and corresponding actions successors = [] i = tiles.index('0') while i % 4 > 0: # Move the blank tile left new_tiles = tiles[:] new_tiles[i], new_tiles[i-1] = new_tiles[i-1], new_tiles[i] successors.append((new_tiles, 'L')) i -= 1 i = tiles.index('0') while i % 4 < 3: # Move the blank tile right new_tiles = tiles[:] new_tiles[i], new_tiles[i+1] = new_tiles[i+1], new_tiles[i] successors.append((new_tiles, 'R')) i += 1 i = tiles.index('0') while i // 4 > 0: # Move the blank tile up new_tiles = tiles[:] new_tiles[i], new_tiles[i-4] = new_tiles[i-4], new_tiles[i] successors.append((new_tiles, 'U')) i -= 4 i = tiles.index('0') while i // 4 < 3: # Move the blank tile down new_tiles = tiles[:] new_tiles[i], new_tiles[i+4] = new_tiles[i+4], new_tiles[i] successors.append((new_tiles, 'D')) i += 4 return successors defrun_iddfs_manhattan_distance(self, initial_state: List[str], max_depth: int) -> Tuple[List[str], int]: # Run IDDFS algorithm with manhattan distance heuristic function for depth in range(max_depth + 1): result = self.dls_manhattan_distance(initial_state, depth) if result is not None: return result defdls_manhattan_distance(self, state: List[str], depth: int): # Recursive function for depth-limited search with manhattan distance heuristic if depth == 0 and self.goal_test(state): return ([], 0) elif depth > 0: for successor, action in self.get_successors(state): h = self.manhattan_distance(successor) result = self.dls_manhattan_distance(successor, depth - 1) if result is not None: path, num_expanded = result return ([action] + path, num_expanded + 1) returnNone defrun_iddfs_misplaced_tiles(self, initial_state: List[str], max_depth: int) -> Tuple[List[str], int]: # Run IDDFS algorithm with misplaced tiles heuristic function for depth in range(max_depth + 1): result = self.dls_misplaced_tiles(initial_state, depth) if result is not None: return result defdls_misplaced_tiles(self, state: List[str], depth: int): # Recursive function for depth-limited search with misplaced tiles heuristic if depth == 0 and self.goal_test(state): return ([], 0) elif depth > 0: for successor, action in self.get_successors(state): h = self.misplaced_tiles(successor) result = self.dls_misplaced_tiles(successor, depth - 1) if result is not None: path, num_expanded = result return ([action] + path, num_expanded + 1) returnNone defsolve(self, initial_state, heuristic="manhattan", max_depth=50): initial_list = initial_state.split(" ") start_time = time.perf_counter() if heuristic == "manhattan": path, num_expanded = self.run_iddfs_manhattan_distance(initial_list, max_depth) elif heuristic == "misplaced tiles": path, num_expanded = self.run_iddfs_misplaced_tiles(initial_list, max_depth) end_time = time.perf_counter() elapsed_time = end_time - start_time memory_usage = psutil.Process().memory_info().rss print("Moves: " + " ".join(path)) print("Number of expanded Nodes: " + str(num_expanded)) print("Time Taken: " + str(elapsed_time)) print("Max Memory (Bytes): " + str(memory_usage)) return "".join(path) # USE THE README CODE TO RUN THE PROGRAM. # if __name__ == '__main__': # agent = Search() # agent.solve("1 0 2 4 5 7 3 8 9 6 11 12 13 10 14 15")
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Can you Modify this code To do a IDA* Search The output should be the same as this code.
import psutil
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education