Can you fix the code of the completion time based on the gantt chart and the output of the completion time must be the same in the image below? Thank you!
Can you fix the code of the completion time based on the gantt chart and the output of the completion time must be the same in the image below? Thank you!
Code:
#include <iostream>
#include <queue>
#include <string>
#include <
struct Process {
int processId;
int burstTime;
int priority;
};
void print_gantt_chart(const std::vector<std::pair<int, int>>& gantt_chart) {
std::cout << "Gantt Chart:" << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "| ";
for (const auto& process : gantt_chart) {
std::cout << "P" << process.first << " | ";
}
std::cout << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "0 ";
int currentTime = 0;
for (const auto& process : gantt_chart) {
currentTime += process.second;
if (std::to_string(currentTime).length() == 1)
std::cout << " " << currentTime << " ";
else
std::cout << " " << currentTime << " ";
}
std::cout << std::endl;
}
void multiLevelQueueScheduling(const std::vector<Process>& processes, int quantumTime) {
std::queue<Process> fcfs;
std::queue<Process> rr;
std::queue<Process> priority;
for (const auto& process : processes) {
if (process.priority == 1)
fcfs.push(process);
else if (process.priority == 2)
rr.push(process);
else if (process.priority == 3 || process.priority == 4)
priority.push(process);
}
std::vector<std::pair<int, int>> gantt_chart;
while (!fcfs.empty() || !rr.empty() || !priority.empty()) {
if (!fcfs.empty()) {
Process process = fcfs.front();
fcfs.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
fcfs.push(process);
}
if (!rr.empty()) {
Process process = rr.front();
rr.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
rr.push(process);
}
if (!priority.empty()) {
Process process = priority.front();
priority.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
priority.push(process);
}
}
print_gantt_chart(gantt_chart);
std::vector<int> completionTime(processes.size());
std::vector<int> turnaroundTime(processes.size());
std::vector<int> waitingTime(processes.size());
int currentEndTime = 0;
for (const auto& process : processes) {
int processIndex = process.processId - 1;
currentEndTime += process.burstTime;
completionTime[processIndex] = currentEndTime;
turnaroundTime[processIndex] = completionTime[processIndex];
waitingTime[processIndex] = turnaroundTime[processIndex] - process.burstTime;
}
std::cout << "\nProcess\t\tBurst Time\t\tPriority\t\tCompletion Time\t\tTurnaround Time\t\tWaiting Time" << std::endl;
for (const auto& process : processes) {
int processIndex = process.processId - 1;
std::cout << "P" << process.processId << "\t\t" << process.burstTime << "\t\t\t" << process.priority << "\t\t\t"
<< completionTime[processIndex] << "\t\t\t" << turnaroundTime[processIndex] << "\t\t\t" << waitingTime[processIndex] << std::endl;
}
float avgWaitingTime = 0;
float avgTurnaroundTime = 0;
for (const auto& process : processes) {
avgWaitingTime += waitingTime[process.processId - 1];
avgTurnaroundTime += turnaroundTime[process.processId - 1];
}
avgWaitingTime /= processes.size();
avgTurnaroundTime /= processes.size();
std::cout << std::endl;
std::cout << "Average Waiting Time: " << avgWaitingTime << std::endl;
std::cout << "Average Turnaround Time: " << avgTurnaroundTime << std::endl;
}
int main() {
std::vector<Process> processes = {
{1, 8, 4},
{2, 6, 1},
{3, 1, 2},
{4, 9, 2},
{5, 3, 3}
};
int quantumTime = 2;
multiLevelQueueScheduling(processes, quantumTime);
return 0;
}
![Gantt Chart
O
P2 P3 PI P2
2 (3 5 7
Completion Time
27 t
13
P1 =
P2 =
3 +
25²
P3 =
P4 =
P5:201
рч
q
P5 | P2
11
p2 | P4
13
15
PI
17
ру
19
P5
20
P4 | PI
22
24
РЧ ТР
25
27
* Last execution of
each process](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F58dd768f-8c36-4170-80fa-1dffd6b7b187%2Fb886abaf-db2e-494f-b03f-e6ca171f4201%2Fp3jaysj_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 4 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Can you fix the output of the Gantt chart in the code and the output of the gantt chart should be the same in the image below? The instruction also on how to solve the Gantt chart is in the image below. Badly need to fix it :( Thank you!
Code:
#include <iostream>
#include <queue>
#include <string>
#include <
struct Process {
int processId;
int burstTime;
int priority;
};
void print_gantt_chart(const std::vector<std::pair<int, int>>& gantt_chart) {
std::cout << "Gantt Chart:" << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "| ";
for (const auto& process : gantt_chart) {
std::cout << "P" << process.first << " | ";
}
std::cout << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "0 ";
int currentTime = 0;
for (const auto& process : gantt_chart) {
currentTime += process.second;
if (std::to_string(currentTime).length() == 1)
std::cout << " " << currentTime << " ";
else
std::cout << " " << currentTime << " ";
}
std::cout << std::endl;
}
void multiLevelQueueScheduling(const std::vector<Process>& processes, int quantumTime) {
std::queue<Process> fcfs;
std::queue<Process> rr;
std::queue<Process> priority;
// Splitting the processes into different queues based on priority
for (const auto& process : processes) {
if (process.priority == 1)
fcfs.push(process);
else if (process.priority == 2)
rr.push(process);
else if (process.priority == 3 || process.priority == 4)
priority.push(process);
}
std::vector<std::pair<int, int>> gantt_chart;
while (!fcfs.empty() || !rr.empty() || !priority.empty()) {
// FCFS Scheduling
if (!fcfs.empty()) {
Process process = fcfs.front();
fcfs.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
fcfs.push(process);
}
// RR Scheduling
if (!rr.empty()) {
Process process = rr.front();
rr.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
rr.push(process);
}
// Priority Scheduling
if (!priority.empty()) {
Process process = priority.front();
priority.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
priority.push(process);
}
}
print_gantt_chart(gantt_chart);
std::vector<int> completionTime(processes.size());
std::vector<int> turnaroundTime(processes.size());
std::vector<int> waitingTime(processes.size());
int currentEndTime = 0;
for (const auto& process : gantt_chart) {
int processIndex = process.first - 1;
currentEndTime += process.second;
completionTime[processIndex] = currentEndTime;
turnaroundTime[processIndex] = completionTime[processIndex];
waitingTime[processIndex] = turnaroundTime[processIndex] - processes[processIndex].burstTime;
}
std::cout << "\nProcess\t\tBurst Time\t\tPriority\t\tCompletion Time\t\tTurnaround Time\t\tWaiting Time" << std::endl;
for (const auto& process : processes) {
int processIndex = process.processId - 1;
std::cout << "P" << process.processId << "\t\t" << process.burstTime << "\t\t\t" << process.priority << "\t\t\t"
<< completionTime[processIndex] << "\t\t\t" << turnaroundTime[processIndex] << "\t\t\t" << waitingTime[processIndex] << std::endl;
}
float avgWaitingTime = 0;
float avgTurnaroundTime = 0;
for (const auto& process : processes) {
avgWaitingTime += waitingTime[process.processId - 1];
avgTurnaroundTime += turnaroundTime[process.processId - 1];
}
avgWaitingTime /= processes.size();
avgTurnaroundTime /= processes.size();
std::cout << std::endl;
std::cout << "Average Waiting Time: " << avgWaitingTime << std::endl;
std::cout << "Average Turnaround Time: " << avgTurnaroundTime << std::endl;
}
int main() {
std::vector<Process> processes = {
{1, 8, 4},
{2, 6, 1},
{3, 1, 2},
{4, 9, 2},
{5, 3, 3}
};
int quantumTime = 2;
multiLevelQueueScheduling(processes, quantumTime);
return 0;
}
![Gantt Chart
hd hd
hd | hd
P2 P3 P4
0 6 7 9
11 13
13
P4 | p4
P5 PI
15 16 19 27](https://content.bartleby.com/qna-images/question/58dd768f-8c36-4170-80fa-1dffd6b7b187/75f5e31b-e89d-4eba-ac89-3ef152c06230/nhpbthgi_thumbnail.jpeg)
![INDERJE
P4
P4
рч ру T
7 q
18 15
a. Gantt chart
P2
0 6
0
Explanation:
FCFS - First Priority (High priority
RR - second priority / medium Priority
Priority - Third Priority / Low priority
P2
b
P3
a. P2= Highest priority (FCFS) with Burst Time of 6
P2
O
6
P2
b. P3 and Py = Second priority (RR with Time Quantum = 2)
P3
6
7
P4 P4
рз | ри
។
priority 3
q ||
P3 = 1 ×
P4 = 9-2=7 - 2 = 5-2= 3-2 = 1 ×
C. P5 and PI = Low Priority (priority)
priority 4:
P4
P4
16
13
P4 P4
P5
P4 | P4
15
11 13 15
16
PI
19 27
P4 P4 P5 PI
16
q
P5 with Burst Time of 3
P5 =
16 + 3 = (19
PI with Burst Time of 8
Pl. = 19. + 8. (27.
Priority 1 P2 (FCFS)
priority 2: P3 and P4 (RR with Time Quantum = 2)
priority 3: P5 (priority)
priority 4: Pl (Priority)
19 27](https://content.bartleby.com/qna-images/question/58dd768f-8c36-4170-80fa-1dffd6b7b187/75f5e31b-e89d-4eba-ac89-3ef152c06230/8lb3wo_thumbnail.jpeg)
Can you fix the code and the gantt chart? The output should be same as the image below?
Code:
#include <iostream>
#include <queue>
#include <string>
#include <
struct Process {
int processId;
int burstTime;
int priority;
};
void print_gantt_chart(const std::vector<std::pair<int, int>>& gantt_chart) {
std::cout << "Gantt Chart:" << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "| ";
for (const auto& process : gantt_chart) {
std::cout << "P" << process.first << " | ";
}
std::cout << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "0 ";
int currentTime = 0;
for (const auto& process : gantt_chart) {
currentTime += process.second;
if (std::to_string(currentTime).length() == 1)
std::cout << " " << currentTime << " ";
else
std::cout << " " << currentTime << " ";
}
std::cout << std::endl;
}
void multiLevelQueueScheduling(const std::vector<Process>& processes, int quantumTime) {
std::queue<Process> fcfs;
std::queue<Process> rr;
std::queue<Process> priority;
// Splitting the processes into different queues based on priority
for (const auto& process : processes) {
if (process.priority == 1)
fcfs.push(process);
else if (process.priority == 2)
rr.push(process);
else if (process.priority == 3 || process.priority == 4)
priority.push(process);
}
std::vector<std::pair<int, int>> gantt_chart;
while (!fcfs.empty() || !rr.empty() || !priority.empty()) {
// FCFS Scheduling
if (!fcfs.empty()) {
Process process = fcfs.front();
fcfs.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
fcfs.push(process);
}
// RR Scheduling
if (!rr.empty()) {
Process process = rr.front();
rr.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
rr.push(process);
}
// Priority Scheduling
if (!priority.empty()) {
Process process = priority.front();
priority.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
priority.push(process);
}
}
print_gantt_chart(gantt_chart);
std::vector<int> completionTime(processes.size());
std::vector<int> turnaroundTime(processes.size());
std::vector<int> waitingTime(processes.size());
int currentEndTime = 0;
for (const auto& process : gantt_chart) {
int processIndex = process.first - 1;
currentEndTime += process.second;
completionTime[processIndex] = currentEndTime;
turnaroundTime[processIndex] = completionTime[processIndex];
waitingTime[processIndex] = turnaroundTime[processIndex] - processes[processIndex].burstTime;
}
std::cout << "\nProcess\t\tBurst Time\t\tPriority\t\tCompletion Time\t\tTurnaround Time\t\tWaiting Time" << std::endl;
for (const auto& process : processes) {
int processIndex = process.processId - 1;
std::cout << "P" << process.processId << "\t\t" << process.burstTime << "\t\t\t" << process.priority << "\t\t\t"
<< completionTime[processIndex] << "\t\t\t" << turnaroundTime[processIndex] << "\t\t\t" << waitingTime[processIndex] << std::endl;
}
float avgWaitingTime = 0;
float avgTurnaroundTime = 0;
for (const auto& process : processes) {
avgWaitingTime += waitingTime[process.processId - 1];
avgTurnaroundTime += turnaroundTime[process.processId - 1];
}
avgWaitingTime /= processes.size();
avgTurnaroundTime /= processes.size();
std::cout << std::endl;
std::cout << "Average Waiting Time: " << avgWaitingTime << std::endl;
std::cout << "Average Turnaround Time: " << avgTurnaroundTime << std::endl;
}
int main() {
std::vector<Process> processes = {
{1, 8, 4},
{2, 6, 1},
{3, 1, 2},
{4, 9, 2},
{5, 3, 3}
};
int quantumTime = 2;
multiLevelQueueScheduling(processes, quantumTime);
return 0;
}
![Gantt Chart
Gantt Chart
P2 P3
067
Process
P1
P2
P3
P4
P5
рч P4 P4 P4 p4 P5 PI
9 11 13 15 16 19 27
Burst Time
(ms)
8
6
1
9
@co
3
Priority
4
1
2
2
3
Completion Turnaround
Time
Time
27
27
6
6
7
16
19
7
16
19
Waiting
Time
19
0
6
7
16](https://content.bartleby.com/qna-images/question/58dd768f-8c36-4170-80fa-1dffd6b7b187/7bab45b1-b442-45c8-b0af-8c52c3f5e661/cz2lrpq_thumbnail.png)
Can you provide a step-by-step procedure on how to solve this image below for better understanding of multilevel queue scheduling? thank you!
![Solve this table using the Multi-level queue scheduling (FCFS, RR, Priority)
Requirements:
a. Gantt Chart
b. Average Waiting Time
c. Average Turnaround Time
Process
P1
P2
P3
P4
P5
Burst Time (ms)
8
6
1
9
3
Priority
4
1
2
2
Priority 1 is FCFS Scheduling
• Priority 2 is Round Robin Scheduling (Time Quantum = 2)
Priority 3 and 4 is Priority Scheduling
Assume that the process with Priority 1 has highest priority and 4 as low priority
Show how to solve the values completely of the three scheduling of all process in
one Gantt chart.
The last execution of process must end in 27](https://content.bartleby.com/qna-images/question/58dd768f-8c36-4170-80fa-1dffd6b7b187/69e447b6-c21b-4e70-9ef6-e50b820554f5/qbvw1i7_thumbnail.png)
Can you fix and change the code of Splitting the processes into different queues based on priority, FCFS Scheduling, RR Scheduling, and Priority Scheduling into new code? The new code is provided in the image below and please show the output. Thank you!
Code:
#include <iostream>
#include <queue>
#include <string>
#include <
struct Process {
int processId;
int burstTime;
int priority;
};
void print_gantt_chart(const std::vector<std::pair<int, int>>& gantt_chart) {
std::cout << "Gantt Chart:" << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "| ";
for (const auto& process : gantt_chart) {
std::cout << "P" << process.first << " | ";
}
std::cout << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "0 ";
int currentTime = 0;
for (const auto& process : gantt_chart) {
currentTime += process.second;
if (std::to_string(currentTime).length() == 1)
std::cout << " " << currentTime << " ";
else
std::cout << " " << currentTime << " ";
}
std::cout << std::endl;
}
void multiLevelQueueScheduling(const std::vector<Process>& processes, int quantumTime) {
std::queue<Process> fcfs;
std::queue<Process> rr;
std::queue<Process> priority;
// Splitting the processes into different queues based on priority
for (const auto& process : processes) {
if (process.priority == 1)
fcfs.push(process);
else if (process.priority == 2)
rr.push(process);
else if (process.priority == 3 || process.priority == 4)
priority.push(process);
}
std::vector<std::pair<int, int>> gantt_chart;
while (!fcfs.empty() || !rr.empty() || !priority.empty()) {
// FCFS Scheduling
if (!fcfs.empty()) {
Process process = fcfs.front();
fcfs.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
fcfs.push(process);
}
// RR Scheduling
if (!rr.empty()) {
Process process = rr.front();
rr.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
rr.push(process);
}
// Priority Scheduling
if (!priority.empty()) {
Process process = priority.front();
priority.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
priority.push(process);
}
}
print_gantt_chart(gantt_chart);
std::vector<int> completionTime(processes.size());
std::vector<int> turnaroundTime(processes.size());
std::vector<int> waitingTime(processes.size());
int currentEndTime = 0;
for (const auto& process : gantt_chart) {
int processIndex = process.first - 1;
currentEndTime += process.second;
completionTime[processIndex] = currentEndTime;
turnaroundTime[processIndex] = completionTime[processIndex];
waitingTime[processIndex] = turnaroundTime[processIndex] - processes[processIndex].burstTime;
}
std::cout << "\nProcess\t\tBurst Time\t\tPriority\t\tCompletion Time\t\tTurnaround Time\t\tWaiting Time" << std::endl;
for (const auto& process : processes) {
int processIndex = process.processId - 1;
std::cout << "P" << process.processId << "\t\t" << process.burstTime << "\t\t\t" << process.priority << "\t\t\t"
<< completionTime[processIndex] << "\t\t\t" << turnaroundTime[processIndex] << "\t\t\t" << waitingTime[processIndex] << std::endl;
}
float avgWaitingTime = 0;
float avgTurnaroundTime = 0;
for (const auto& process : processes) {
avgWaitingTime += waitingTime[process.processId - 1];
avgTurnaroundTime += turnaroundTime[process.processId - 1];
}
avgWaitingTime /= processes.size();
avgTurnaroundTime /= processes.size();
std::cout << std::endl;
std::cout << "Average Waiting Time: " << avgWaitingTime << std::endl;
std::cout << "Average Turnaround Time: " << avgTurnaroundTime << std::endl;
}
int main() {
std::vector<Process> processes = {
{1, 8, 4},
{2, 6, 1},
{3, 1, 2},
{4, 9, 2},
{5, 3, 3}
};
int quantumTime = 2;
multiLevelQueueScheduling(processes, quantumTime);
return 0;
}
![New Code:
// Splitting the processes into different queues based on priority
for (int i = 0; i < totalProcesses; i++) {
if (processes [i].priority == 1)
fcfsQueue.push(processes [i]);
else if (processes[i].priority == 2)
rrQueue.push(processes [i]);
else if (processes[i].priority == 3)
priorityQueue.push(processes[i]);
}
// FCFS Scheduling
int time = 0;
while (!fcfsQueue.empty()) {
Process currentProcess = fcfsQueue.front();
fcfsQueue.pop();
waiting Times [current Process.processld - 1] = time;
time += currentProcess.burst Time;
turnaroundTimes[currentProcess.processld - 1] = time;
}
// RR Scheduling
while (!rrQueue.empty()) {
Process current Process = rrQueue.front();
rrQueue.pop();
}
waiting Times[current Process.processid - 1] = time;
if (currentProcess.burstTime > 2) {
currentProcess.burstTime -= 2;
time += 2;
rrQueue.push(currentProcess);
} else {
time += currentProcess.burst Time;
turnaroundTimes[currentProcess.processld - 1] = time;
}
}
// Priority Scheduling
while (!priorityQueue.empty()) {
Process currentProcess = priorityQueue.top();
priorityQueue.pop();
waiting Times [current Process.processld - 1] = time;
time += currentProcess.burst Time;
turnaroundTimes[currentProcess.processld-
1] = time;](https://content.bartleby.com/qna-images/question/58dd768f-8c36-4170-80fa-1dffd6b7b187/f2088ebe-3010-425e-ae97-e96fc9d6d7c0/idgl53_thumbnail.png)
Can you fix the code by adding if all of the processes in the Arrival Time is 0 and the output must be the same in the image below? Thank you!
Code:
#include <iostream>
#include <queue>
#include <string>
#include <
struct Process {
int processId;
int burstTime;
int priority;
};
void print_gantt_chart(const std::vector<std::pair<int, int>>& gantt_chart) {
std::cout << "Gantt Chart:" << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "| ";
for (const auto& process : gantt_chart) {
std::cout << "P" << process.first << " | ";
}
std::cout << std::endl;
std::cout << "----------------------------------------------------------------------------" << std::endl;
std::cout << "0 ";
int currentTime = 0;
for (const auto& process : gantt_chart) {
currentTime += process.second;
if (std::to_string(currentTime).length() == 1)
std::cout << " " << currentTime << " ";
else
std::cout << " " << currentTime << " ";
}
std::cout << std::endl;
}
void multiLevelQueueScheduling(const std::vector<Process>& processes, int quantumTime) {
std::queue<Process> fcfs;
std::queue<Process> rr;
std::queue<Process> priority;
for (const auto& process : processes) {
if (process.priority == 1)
fcfs.push(process);
else if (process.priority == 2)
rr.push(process);
else if (process.priority == 3 || process.priority == 4)
priority.push(process);
}
std::vector<std::pair<int, int>> gantt_chart;
while (!fcfs.empty() || !rr.empty() || !priority.empty()) {
if (!fcfs.empty()) {
Process process = fcfs.front();
fcfs.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
fcfs.push(process);
}
if (!rr.empty()) {
Process process = rr.front();
rr.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
rr.push(process);
}
if (!priority.empty()) {
Process process = priority.front();
priority.pop();
int executionTime = std::min(quantumTime, process.burstTime);
process.burstTime -= executionTime;
gantt_chart.emplace_back(process.processId, executionTime);
if (process.burstTime > 0)
priority.push(process);
}
}
print_gantt_chart(gantt_chart);
std::vector<int> completionTime(processes.size());
std::vector<int> turnaroundTime(processes.size());
std::vector<int> waitingTime(processes.size());
int currentEndTime = 0;
for (const auto& process : gantt_chart) {
int processIndex = process.first - 1;
currentEndTime += process.second;
completionTime[processIndex] = currentEndTime;
turnaroundTime[processIndex] = completionTime[processIndex];
waitingTime[processIndex] = turnaroundTime[processIndex] - processes[processIndex].burstTime;
}
std::cout << "\nProcess\t\tBurst Time\t\tPriority\t\tCompletion Time\t\tTurnaround Time\t\tWaiting Time" << std::endl;
for (const auto& process : processes) {
int processIndex = process.processId - 1;
std::cout << "P" << process.processId << "\t\t" << process.burstTime << "\t\t\t" << process.priority << "\t\t\t"
<< completionTime[processIndex] << "\t\t\t" << turnaroundTime[processIndex] << "\t\t\t" << waitingTime[processIndex] << std::endl;
}
float avgWaitingTime = 0;
float avgTurnaroundTime = 0;
for (const auto& process : processes) {
avgWaitingTime += waitingTime[process.processId - 1];
avgTurnaroundTime += turnaroundTime[process.processId - 1];
}
avgWaitingTime /= processes.size();
avgTurnaroundTime /= processes.size();
std::cout << std::endl;
std::cout << "Average Waiting Time: " << avgWaitingTime << std::endl;
std::cout << "Average Turnaround Time: " << avgTurnaroundTime << std::endl;
}
int main() {
std::vector<Process> processes = {
{1, 8, 4},
{2, 6, 1},
{3, 1, 2},
{4, 9, 2},
{5, 3, 3}
};
int quantumTime = 2;
multiLevelQueueScheduling(processes, quantumTime);
return 0;
}
![Process Arrival
Time
P1
P2
P3
P4
P5
(ms)
0
0
0
0
0
Burst Priority Completion Turnaround
Time
Time
Time
(ms)
8
6
1
9
3
4
1
2
2
3
27
13
3
25
20
27
13
3
25
20
Waiting
Time
19
7
2
16
17](https://content.bartleby.com/qna-images/question/58dd768f-8c36-4170-80fa-1dffd6b7b187/f34ec545-9d1e-43db-8c63-be94b8c67398/p7ev8eh_thumbnail.png)
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)