C (s) + 02 (g) → CO2 (g) AH° = -393.5 kJ Calculate the heat change if 2.54 g of C is reacted.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
**Thermochemistry Problem: Enthalpy Change Calculation**

**Problem Statement:**
Consider the following chemical reaction:

\[ \text{C(s) + O}_2\text{(g)} \rightarrow \text{CO}_2\text{(g)} \]

The standard enthalpy change (\(\Delta H^\circ\)) for this reaction is \(-393.5 \, \text{kJ/mol}\).

Calculate the heat change if 2.54 g of carbon (C) is reacted.

**Solution Box:**
[Type your answer here]

**Explanation:**

To solve this problem, you need to:

1. Determine the number of moles of carbon in 2.54 g.
   - Use the molar mass of carbon, which is approximately 12.01 g/mol.

2. Use the moles of carbon and the given enthalpy change to calculate the heat change for the reaction. 

This calculation will require you to set up a proportion since \(-393.5 \, \text{kJ}\) is released per mole of carbon reacted.
Transcribed Image Text:**Thermochemistry Problem: Enthalpy Change Calculation** **Problem Statement:** Consider the following chemical reaction: \[ \text{C(s) + O}_2\text{(g)} \rightarrow \text{CO}_2\text{(g)} \] The standard enthalpy change (\(\Delta H^\circ\)) for this reaction is \(-393.5 \, \text{kJ/mol}\). Calculate the heat change if 2.54 g of carbon (C) is reacted. **Solution Box:** [Type your answer here] **Explanation:** To solve this problem, you need to: 1. Determine the number of moles of carbon in 2.54 g. - Use the molar mass of carbon, which is approximately 12.01 g/mol. 2. Use the moles of carbon and the given enthalpy change to calculate the heat change for the reaction. This calculation will require you to set up a proportion since \(-393.5 \, \text{kJ}\) is released per mole of carbon reacted.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY