A 6.61g sample of an unknown salt (MM=116.82g//mol) is dissolved in 150.00g water in a coffee cup calorimeter. Before placing the sample in the water, the temperature of the salt and water is 23.72 C. After the salt has completely dissolved, the temperature of the solution is 28.54 C. If -3.16 × 103 J of heat was lost during the dissolution reaction of 0.0566 moles of the unknown salt, what is the enthalpy change (in kJ/ mol of salt) for the dissolution reaction?
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
Answer:
Amount of heat released or absorbed during the dissolution of 1 mole of a compound is called as enthalpy change for the dissolution reaction of the compound.
Step by step
Solved in 3 steps with 4 images