C++ PROGRAMMING Topic: Binary Search Trees Explain the c++ code below.: SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS  It doesn't have to be long, as long as you explain what the important parts of the code do. (The code is already implemented and correct, only the explanation needed)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

C++ PROGRAMMING
Topic: Binary Search Trees

Explain the c++ code below.: SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS 

It doesn't have to be long, as long as you explain what the important parts of the code do. (The code is already implemented and correct, only the explanation needed) 


int childCount(node* p) {
        bool Cright = false;
        bool Cleft = false;
        if(p->right != NULL){
            Cright = true;
        }
        if(p->left != NULL){    
            Cleft = true; 
        }
        if(Cleft == true && Cright== true){
            return 2;
        }
        if(Cright){
            return 1;
        }
        if(Cleft){
            return -1;
        }
        return 0;
        
    }

 

    int set(node* p, int e) {
        int elem = p->element;
        p->element = e;
        return elem;
    }

 

    node* addSibling(node* p, int e) {
        node* P = p->parent;
        if(P != NULL){
            if(sibling(p) == NULL){
                if(sibling(p) == left(P)){
                    return addLeft(P,e);
                }
                    return addRight(P,e);
            }
        }
        cout<<"Error"<<endl;
        return NULL;
    }

 

    void clear(){
        clear_postorder(root);
    }

 

    void attach(node* p, BTree* t1, BTree* t2) {
        if(p->right == NULL && p->left == NULL){
            if(t1->root != NULL){
                t1->root->parent = p;
                p->left = t1->root;
            }
           if(t2->root != NULL){
               t2->root->parent = p;
                p->right = t2->root;
           } 
            return;
        }
        cout<<"Error"<<endl;
    }

 

    int remove(node* p) {
        if(left(p) == NULL || right(p) == NULL){
            node* P = NULL;
            node* childNode = NULL;
            if(p->parent != NULL){
                P = p->parent;
            }
            else{
                P = p; 
                if(left(P) != NULL){
                    childNode = P->left;
                    childNode->parent = NULL;
                    root = childNode;
                }
                else{
                    childNode = P->right;
                    childNode->parent = NULL;
                    root = childNode;
                }
                int elem = P->element;
                free(P);
                size--;
                return elem;
            }
            if(left(P) == p){ 
                if(left(p) != NULL){
                    P->left = childNode;
                    childNode = p->left;
                    if(p->left != NULL || p->right != NULL){   
                        childNode->parent = P;
                    }
                }
                else{
                    childNode = p->right;
                    P->left = childNode;
                    if(p->left != NULL || p->right != NULL){     
                        childNode->parent = P;
                    }
                }  
            }
            else{
                if(left(p) != NULL){
                    childNode = p->left;
                    P->right = childNode;
                    if(p->left != NULL || p->right != NULL){  
                        childNode->parent = P;
                    }   
                }
                else{
                    childNode = p->right;
                    P->right = childNode;
                    if(p->left != NULL || p->right != NULL){  
                        childNode->parent = P;
                    }
                } 
            }
            int elem = p->element;
            free(p);
            return elem;
            size--;
        }
        cout<<"Error"<<endl;
        return 0;
    }
•int childCount(node* p): Returns 0 if the position p has no children, -1 if p has only a left child, 1 if p has only a right child, and 2 if p has two children.
•int set(node* p, int e): Replaces the element stored at position p with element e, and returns the previously stored element.
•node* addSibling(node* P, int e): Creates a child of the parent of position p to make the node a sibling of p and returns the position of the new node; an
error occurs if p already has a sibling or p has no parent.
•void clear(): Clears and frees up all of the nodes in the tree. This should be done recursively where you can call a helper method that is recursive. You can
only decrement the value of your size (i.e. size--) and not directly set it to some other value (e.g. size=0, size=size-size) in your code that is used by this
method.
•void attach(node* p, BTree* T1, BTree* T2): Attaches the internal structure of trees T1 and T2 as the respective left and right subtrees of leaf position p and
optionally resets T1 and T2 to empty trees; an error condition occurs if p is not a leaf.
•int remove(node* p): Removes the node at position p, replacing it with its child (if any), and returns the element that had been stored at p. An error occurs if
p has two children and this is the case since the tree is not ordered.
Transcribed Image Text:•int childCount(node* p): Returns 0 if the position p has no children, -1 if p has only a left child, 1 if p has only a right child, and 2 if p has two children. •int set(node* p, int e): Replaces the element stored at position p with element e, and returns the previously stored element. •node* addSibling(node* P, int e): Creates a child of the parent of position p to make the node a sibling of p and returns the position of the new node; an error occurs if p already has a sibling or p has no parent. •void clear(): Clears and frees up all of the nodes in the tree. This should be done recursively where you can call a helper method that is recursive. You can only decrement the value of your size (i.e. size--) and not directly set it to some other value (e.g. size=0, size=size-size) in your code that is used by this method. •void attach(node* p, BTree* T1, BTree* T2): Attaches the internal structure of trees T1 and T2 as the respective left and right subtrees of leaf position p and optionally resets T1 and T2 to empty trees; an error condition occurs if p is not a leaf. •int remove(node* p): Removes the node at position p, replacing it with its child (if any), and returns the element that had been stored at p. An error occurs if p has two children and this is the case since the tree is not ordered.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps

Blurred answer
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education