C PROGRAMMING HELP! I tried a threaded reply and bartleby wasn't having it. Soooo: Please create the header file as specified and implement it into my script. Thank you for your help, it is seriously appreciated! The header file deals with the following instruction prompt: Find the roots of the second order nontrivial solution. D2y+a1Dy+a2 = 0 => λ 2+a1 λ +a2 = 0 Create a header file for this step. I believe the portion of the script that needs to be turned into a utilized header file is located in the main() function. Thank you so much for your help, pasted is a copy of my script so far: #include #include void compute_coefficients(double lambda1, double lambda2, double *C1, double *C2, double *C_alpha, double *theta); void display_output(double lambda1, double lambda2, double C1, double C2, double C_alpha, double theta); int main() {     int a, b, c;     double lambda1, lambda2, C1, C2, C_alpha, theta;     printf("Enter a, b, and c where a*D2y + b*Dy + c*y = 0:\n");     scanf("%d%d%d", &a, &b, &c);     // Compute the roots of the characteristic equation     double discriminant = b * b - 4 * a * c;     if (discriminant < 0) { // Complex roots         lambda1 = -b / (double)(2 * a);         lambda2 = sqrt(-discriminant) / (2 * a);     } else if (discriminant == 0) { // Repeated real roots         lambda1 = lambda2 = -b / (double)(2 * a);     } else { // Distinct real roots         lambda1 = (-b + sqrt(discriminant)) / (2 * a);         lambda2 = (-b - sqrt(discriminant)) / (2 * a);     }     // Compute coefficients and display output based on type of roots     compute_coefficients(lambda1, lambda2, &C1, &C2, &C_alpha, &theta);     display_output(lambda1, lambda2, C1, C2, C_alpha, theta);     return 0; } void compute_coefficients(double lambda1, double lambda2, double *C1, double *C2, double *C_alpha, double *theta) {     if (lambda1 == lambda2) { // Repeated real roots         *C1 = 1;         *C2 = 0;         *C_alpha = lambda1;         *theta = 0;     } else if (fabs(lambda1 - lambda2) < 1e-10) { // Distinct real roots (with rounding tolerance)         *C1 = 1;         *C2 = lambda1;         *C_alpha = 0;         *theta = 0;     } else { // Complex conjugate roots         *C1 = 1;         *C2 = 0;         *C_alpha = sqrt(lambda1 * lambda1 + lambda2 * lambda2);         *theta = atan2(lambda2, lambda1);     } } void display_output(double lambda1, double lambda2, double C1, double C2, double C_alpha, double theta) {     printf("The roots are:\n");     printf("lambda1 = %lf\n", lambda1);     printf("lambda2 = %lf\n", lambda2);     if (lambda1 == lambda2) { // Repeated real roots         printf("The solution is: y(t) = (C1 + C2 * t) * e^(%lf t)\n", lambda1);         printf("Please enter initial conditions y(0) and y'(0):\n");         double y0, y_prime0;         scanf("%lf %lf", &y0, &y_prime0);         C1= y0;         C2 = y_prime0 - lambda1 * y0;         printf("The solution is: y(t) = ( %lf + %lf * t ) * e^(%lf t)\n", C1, C2, lambda1);     } else if (fabs(lambda1 - lambda2) < 1e-10) { // Distinct real roots (with rounding tolerance)         printf("The solution is: y(t) = (C1 + C2 * t) * e^(%lf t)\n", lambda1);         printf("Please enter initial conditions y(0) and y'(0):\n");         double y0, y_prime0;         scanf("%lf %lf", &y0, &y_prime0);         C1 = y0;         C2 = y_prime0 - lambda1 * y0;         printf("The solution is: y(t) = ( %lf + %lf * t ) * e^(%lf t)\n", C1, C2, lambda1);     } else { // Complex conjugate roots         printf("The solution is: y(t) = e^(%lf t) * (C1 * cos(%lf t) + C2 * sin(%lf t))\n", C_alpha, theta, theta);         printf("Please enter initial conditions y(0) and y'(0):\n");         double y0, y_prime0;         scanf("%lf %lf", &y0, &y_prime0);         C1 = y0;         C2 = (y_prime0 - lambda1 * y0) / lambda2;         printf("The solution is: y(t) = e^(%lf t) * ( %lf * cos(%lf t) + %lf * sin(%lf t))\n", C_alpha, C1, theta, C2, theta);     } } Thank you for your help again! Attached is a copy of the question in the assignment as it may clarify things.

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

C PROGRAMMING HELP! I tried a threaded reply and bartleby wasn't having it. Soooo:

Please create the header file as specified and implement it into my script. Thank you for your help, it is seriously appreciated!

The header file deals with the following instruction prompt:

Find the roots of the second order nontrivial solution.
D2y+a1Dy+a2 = 0 => λ 2+a1 λ +a2 = 0
Create a header file for this step.

I believe the portion of the script that needs to be turned into a utilized header file is located in the main() function. Thank you so much for your help, pasted is a copy of my script so far:

#include <stdio.h>
#include <math.h>

void compute_coefficients(double lambda1, double lambda2, double *C1, double *C2, double *C_alpha, double *theta);
void display_output(double lambda1, double lambda2, double C1, double C2, double C_alpha, double theta);

int main()
{
    int a, b, c;
    double lambda1, lambda2, C1, C2, C_alpha, theta;

    printf("Enter a, b, and c where a*D2y + b*Dy + c*y = 0:\n");
    scanf("%d%d%d", &a, &b, &c);

    // Compute the roots of the characteristic equation
    double discriminant = b * b - 4 * a * c;
    if (discriminant < 0) { // Complex roots
        lambda1 = -b / (double)(2 * a);
        lambda2 = sqrt(-discriminant) / (2 * a);
    } else if (discriminant == 0) { // Repeated real roots
        lambda1 = lambda2 = -b / (double)(2 * a);
    } else { // Distinct real roots
        lambda1 = (-b + sqrt(discriminant)) / (2 * a);
        lambda2 = (-b - sqrt(discriminant)) / (2 * a);
    }

    // Compute coefficients and display output based on type of roots
    compute_coefficients(lambda1, lambda2, &C1, &C2, &C_alpha, &theta);
    display_output(lambda1, lambda2, C1, C2, C_alpha, theta);

    return 0;
}

void compute_coefficients(double lambda1, double lambda2, double *C1, double *C2, double *C_alpha, double *theta)
{
    if (lambda1 == lambda2) { // Repeated real roots
        *C1 = 1;
        *C2 = 0;
        *C_alpha = lambda1;
        *theta = 0;
    } else if (fabs(lambda1 - lambda2) < 1e-10) { // Distinct real roots (with rounding tolerance)
        *C1 = 1;
        *C2 = lambda1;
        *C_alpha = 0;
        *theta = 0;
    } else { // Complex conjugate roots
        *C1 = 1;
        *C2 = 0;
        *C_alpha = sqrt(lambda1 * lambda1 + lambda2 * lambda2);
        *theta = atan2(lambda2, lambda1);
    }
}

void display_output(double lambda1, double lambda2, double C1, double C2, double C_alpha, double theta)
{
    printf("The roots are:\n");
    printf("lambda1 = %lf\n", lambda1);
    printf("lambda2 = %lf\n", lambda2);

    if (lambda1 == lambda2) { // Repeated real roots
        printf("The solution is: y(t) = (C1 + C2 * t) * e^(%lf t)\n", lambda1);
        printf("Please enter initial conditions y(0) and y'(0):\n");
        double y0, y_prime0;
        scanf("%lf %lf", &y0, &y_prime0);
        C1= y0;
        C2 = y_prime0 - lambda1 * y0;
        printf("The solution is: y(t) = ( %lf + %lf * t ) * e^(%lf t)\n", C1, C2, lambda1);
    } else if (fabs(lambda1 - lambda2) < 1e-10) { // Distinct real roots (with rounding tolerance)
        printf("The solution is: y(t) = (C1 + C2 * t) * e^(%lf t)\n", lambda1);
        printf("Please enter initial conditions y(0) and y'(0):\n");
        double y0, y_prime0;
        scanf("%lf %lf", &y0, &y_prime0);
        C1 = y0;
        C2 = y_prime0 - lambda1 * y0;
        printf("The solution is: y(t) = ( %lf + %lf * t ) * e^(%lf t)\n", C1, C2, lambda1);
    } else { // Complex conjugate roots
        printf("The solution is: y(t) = e^(%lf t) * (C1 * cos(%lf t) + C2 * sin(%lf t))\n", C_alpha, theta, theta);
        printf("Please enter initial conditions y(0) and y'(0):\n");
        double y0, y_prime0;
        scanf("%lf %lf", &y0, &y_prime0);
        C1 = y0;
        C2 = (y_prime0 - lambda1 * y0) / lambda2;
        printf("The solution is: y(t) = e^(%lf t) * ( %lf * cos(%lf t) + %lf * sin(%lf t))\n", C_alpha, C1, theta, C2, theta);
    }
}

Thank you for your help again! Attached is a copy of the question in the assignment as it may clarify things.

Objective: Create a C script that will find the Zero-Input Response of a Second order Linear
Time Invariant System D²y+a₁Dy+a₂ = 0 based on coefficients (a₁ and a₂ ) and initial conditions
(y(0) and y'(0)). (D=d/dt) (Check pages 4 – 8)
Requirements:
Part 1 (Script 1)
1) The user should be prompted to type in coefficients of the Linear Systems and Two Initial
Conditions.
D²y+a₁Dy+a₂ = 0.
2) Find the roots of the second order nontrivial solution.
D²y+a₁Dy+a₂ = 0 => λ²+a₁ λ +a₂ = 0
Create a header file for this step.
Transcribed Image Text:Objective: Create a C script that will find the Zero-Input Response of a Second order Linear Time Invariant System D²y+a₁Dy+a₂ = 0 based on coefficients (a₁ and a₂ ) and initial conditions (y(0) and y'(0)). (D=d/dt) (Check pages 4 – 8) Requirements: Part 1 (Script 1) 1) The user should be prompted to type in coefficients of the Linear Systems and Two Initial Conditions. D²y+a₁Dy+a₂ = 0. 2) Find the roots of the second order nontrivial solution. D²y+a₁Dy+a₂ = 0 => λ²+a₁ λ +a₂ = 0 Create a header file for this step.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Stack
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education