(c) (d) In n (−1)” +00 n=1 2n³ 3 n + +1 +00 n=1 n

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Write out the first five terms of the sequence, determine whether the sequence converges, and if so, find its limit.

---

**Sequence (c):**

\[
\left\{ \frac{\ln n}{n} \right\}_{n=1}^{\infty}
\]

**Steps to Solve:**

1. **Calculate the first five terms:**
   - When \( n = 1 \), \(\frac{\ln 1}{1} = 0\)
   - When \( n = 2 \), \(\frac{\ln 2}{2} \approx 0.347\)
   - When \( n = 3 \), \(\frac{\ln 3}{3} \approx 0.366\)
   - When \( n = 4 \), \(\frac{\ln 4}{4} = 0.346\)
   - When \( n = 5 \), \(\frac{\ln 5}{5} \approx 0.321\)

2. **Convergence Analysis:**
   - As \( n \to \infty \), \(\frac{\ln n}{n} \to 0\)
   - **Limit:** The sequence converges to 0.

---

**Sequence (d):**

\[
\left\{ \frac{(-1)^n \cdot 2n^3}{n^3 + 1} \right\}_{n=1}^{\infty}
\]

**Steps to Solve:**

1. **Calculate the first five terms:**
   - When \( n = 1 \), \(\frac{(-1)^1 \cdot 2 \cdot 1^3}{1^3 + 1} = -1\)
   - When \( n = 2 \), \(\frac{(-1)^2 \cdot 2 \cdot 8}{8 + 1} \approx 1.778\)
   - When \( n = 3 \), \(\frac{(-1)^3 \cdot 2 \cdot 27}{27 + 1} \approx -1.929\)
   - When \( n = 4 \), \(\frac{(-1)^4 \cdot 2 \cdot 64}{64 + 1} \approx 1.969\)
Transcribed Image Text:**Problem Statement:** Write out the first five terms of the sequence, determine whether the sequence converges, and if so, find its limit. --- **Sequence (c):** \[ \left\{ \frac{\ln n}{n} \right\}_{n=1}^{\infty} \] **Steps to Solve:** 1. **Calculate the first five terms:** - When \( n = 1 \), \(\frac{\ln 1}{1} = 0\) - When \( n = 2 \), \(\frac{\ln 2}{2} \approx 0.347\) - When \( n = 3 \), \(\frac{\ln 3}{3} \approx 0.366\) - When \( n = 4 \), \(\frac{\ln 4}{4} = 0.346\) - When \( n = 5 \), \(\frac{\ln 5}{5} \approx 0.321\) 2. **Convergence Analysis:** - As \( n \to \infty \), \(\frac{\ln n}{n} \to 0\) - **Limit:** The sequence converges to 0. --- **Sequence (d):** \[ \left\{ \frac{(-1)^n \cdot 2n^3}{n^3 + 1} \right\}_{n=1}^{\infty} \] **Steps to Solve:** 1. **Calculate the first five terms:** - When \( n = 1 \), \(\frac{(-1)^1 \cdot 2 \cdot 1^3}{1^3 + 1} = -1\) - When \( n = 2 \), \(\frac{(-1)^2 \cdot 2 \cdot 8}{8 + 1} \approx 1.778\) - When \( n = 3 \), \(\frac{(-1)^3 \cdot 2 \cdot 27}{27 + 1} \approx -1.929\) - When \( n = 4 \), \(\frac{(-1)^4 \cdot 2 \cdot 64}{64 + 1} \approx 1.969\)
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,