Before introducing apples to cold storage, they should be cooled to a temperature of 3°C in order to avoid problems when exposing the hot apples to the much lower temperature in the storage. It is assumed that the apples are initially at 25°C, they are spheres of 7 cm diameter and that the cooling is carried out by means of an airstream at −1°C, to a such velocity that the heat convection coefficient is 30 W/(m2 °C). Calculate the necessary time to cool the apples so that its geometric center reaches 3°C. Data (apple properties): density, 930 kg/m3 ; thermal conductivity, 0.50 W/(m °C); specific heat, 3.6 kJ/(kg °C)
Before introducing apples to cold storage, they should be cooled to a temperature of 3°C in order to avoid problems when exposing the hot apples to the much lower temperature in the storage. It is assumed that the apples are initially at 25°C, they are spheres of 7 cm diameter and that the cooling is carried out by means of an airstream at −1°C, to a such velocity that the heat convection coefficient is 30 W/(m2 °C). Calculate the necessary time to cool the apples so that its geometric center reaches 3°C. Data (apple properties): density, 930 kg/m3 ; thermal conductivity, 0.50 W/(m °C); specific heat, 3.6 kJ/(kg °C)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter8: Natural Convection
Section: Chapter Questions
Problem 8.60P
Related questions
Question
Before introducing apples to cold storage, they should be cooled to a temperature of 3°C in order to avoid problems when exposing the hot apples to the much lower temperature in the storage. It is assumed that the apples are initially at 25°C, they are spheres of 7 cm diameter and that the cooling is carried out by means of an airstream at −1°C, to a such velocity that the heat convection coefficient is 30 W/(m2 °C). Calculate the necessary time to cool the apples so that its geometric center reaches 3°C. Data (apple properties): density, 930 kg/m3 ; thermal conductivity, 0.50 W/(m °C); specific heat, 3.6 kJ/(kg °C).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning