Based on the Lineweaver-Burke plot attached. Kinetic data were generated in the (1) absence of any inhibitor, (2) presence of 15 µM of a reversible inhibitor, or (3) presence of 20 µM of a second (distinct) reversible inhibitor. Purified enzyme concentration was 5 µM. The y-intercept of Lines (A) and (B) is 0.9 sec/uM; the y-intercept of Line (C) is 0.3 sec/uM. The slope of Line (A) is 1.8 sec; the slope of Lines (B) and (C) is 0.6 sec. Which of the following statements is true? Select any/all answers that apply. A. Both types of inhibitor mediate a slope effect on the Lineweaver-Burke plot. B. Both types of inhibitor decrease the apparent Vmax for this enzyme-catalyzed reaction. C. Both types of inhibitor alter the apparent Km of this enzyme-catalyzed reaction. D. Lines (A) and (C) share the same X-intercept, indicating that the noncompetitive inhibitor decreases the apparent Km of this enzyme-catalyzed reaction. E. Lines (A) and (C) share the same X-intercept, indicating that the "competitive" and "uncompetitive" effects of the mixed inhibitor on the apparent Km must be equal but opposite.
Enzyme kinetics
In biochemistry, enzymes are proteins that act as biological catalysts. Catalysis is the addition of a catalyst to a chemical reaction to speed up the pace of the reaction. Catalysis can be categorized as either homogeneous or heterogeneous, depending on whether the catalysts are distributed in the same phase as that of the reactants. Enzymes are an essential part of the cell because, without them, many organic processes would slow down and thus will affect the processes that are important for cell survival and sustenance.
Regulation of Enzymes
A substance that acts as a catalyst to regulate the reaction rate in the living organism's metabolic pathways without itself getting altered is an enzyme. Most of the biological reactions and metabolic pathways in the living systems are carried out by enzymes. They are specific for their works and work in particular conditions. It maintains the best possible rate of reaction in the most stable state. The enzymes have distinct properties as they can proceed with the reaction in any direction, their particular binding sites, pH specificity, temperature specificity required in very few amounts.
Based on the Lineweaver-Burke plot attached. Kinetic data were generated in the (1) absence of any inhibitor, (2) presence of 15 µM of a reversible inhibitor, or (3) presence of 20 µM of a second (distinct) reversible inhibitor. Purified enzyme concentration was 5 µM. The y-intercept of Lines (A) and (B) is 0.9 sec/uM; the y-intercept of Line (C) is 0.3 sec/uM. The slope of Line (A) is 1.8 sec; the slope of Lines (B) and (C) is 0.6 sec.
Which of the following statements is true? Select any/all answers that apply.
A. |
Both types of inhibitor mediate a slope effect on the Lineweaver-Burke plot. |
|
B. |
Both types of inhibitor decrease the apparent Vmax for this enzyme-catalyzed reaction. |
|
C. |
Both types of inhibitor alter the apparent Km of this enzyme-catalyzed reaction. |
|
D. |
Lines (A) and (C) share the same X-intercept, indicating that the noncompetitive inhibitor decreases the apparent Km of this enzyme-catalyzed reaction. |
|
E. |
Lines (A) and (C) share the same X-intercept, indicating that the "competitive" and "uncompetitive" effects of the mixed inhibitor on the apparent Km must be equal but opposite. |


Trending now
This is a popular solution!
Step by step
Solved in 2 steps









