b. Using Simulink, simulate the transfer function airflow response, Q(t) (air entering respiratory system) for a sine wave input pressure Pao(1)= 2.5 cm·H½O (i.e. 5 cm·H2O peak-to-peak) at 15 breaths min' (or 0.25 Hz) for each lung model. Use the following parameters: i. RC model: R= 1cm:H2O•s·L·' and C=0.2 L·cm·H20l RIC model: R= 1cm·H2O•s·L·', C= 0.2 L·cm·H2O' , and l= 0.01 cm·H2O·L¯1•s² ii. Two-compartment model: Rc = 1cm·H2O•S•L', Rp1,2 = 0.5 cm-H2O•s·L, Cp1.2=0.2 L·cm·H2O', and l= 0.01 cm·H2O·L-l·s² Mead model: R. = 1cm•H2O•s·L', R, = 0.5 cm:H2O-s·L', C1 =0.2 L·cm·H2O', C,=0.2 L-cm·H2O', C, =0.005 L·cm·H2O', and I= 0.01 cm·H2O•L¯l•s² iii. %3! %3D iv.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
b. Using Simulink, simulate the transfer function airflow response, Q(t) (air entering respiratory
system) for a sine wave input pressure Pao(t)= 2.5 cm·H2O (i.e. 5 cm·H2O peak-to-peak) at 15
breaths min' (or 0.25 Hz) for each lung model. Use the following parameters:
-1
i.
RC model: R= 1cm·H2O's L' and C=0.2 L·cm·H2O¯
RIC model: R= 1cm·H2O's·L', C= 0.2 L·cm·H2O¯ , and I= 0.01 cm·H2O L-s²
Two-compartment model: R. = lcm H2O's L', Rp1,2 = 0.5 cm·H2O•s·L', Cp1,2=0.2
L·cm·H2O', and I= 0.01 cm H2O·L-•s²
Mead model: R. = 1cm·H2O•s L', Rp = 0.5 cm:H2O•s·L', C1 =0.2 L·cm·H2O', Cw=0.2
L·cm·H2O-', C, =0.005 L·cm·H2O', and I= 0.01 cm H2O·L-1·s²
ii.
iii.
iv.
Transcribed Image Text:b. Using Simulink, simulate the transfer function airflow response, Q(t) (air entering respiratory system) for a sine wave input pressure Pao(t)= 2.5 cm·H2O (i.e. 5 cm·H2O peak-to-peak) at 15 breaths min' (or 0.25 Hz) for each lung model. Use the following parameters: -1 i. RC model: R= 1cm·H2O's L' and C=0.2 L·cm·H2O¯ RIC model: R= 1cm·H2O's·L', C= 0.2 L·cm·H2O¯ , and I= 0.01 cm·H2O L-s² Two-compartment model: R. = lcm H2O's L', Rp1,2 = 0.5 cm·H2O•s·L', Cp1,2=0.2 L·cm·H2O', and I= 0.01 cm H2O·L-•s² Mead model: R. = 1cm·H2O•s L', Rp = 0.5 cm:H2O•s·L', C1 =0.2 L·cm·H2O', Cw=0.2 L·cm·H2O-', C, =0.005 L·cm·H2O', and I= 0.01 cm H2O·L-1·s² ii. iii. iv.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Fick’s Law of Diffusion and Mass Transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY