b. Using Simulink, simulate the transfer function airflow response, Q(t) (air entering respiratory system) for a sine wave input pressure Pao(1)= 2.5 cm·H½O (i.e. 5 cm·H2O peak-to-peak) at 15 breaths min' (or 0.25 Hz) for each lung model. Use the following parameters: i. RC model: R= 1cm:H2O•s·L·' and C=0.2 L·cm·H20l RIC model: R= 1cm·H2O•s·L·', C= 0.2 L·cm·H2O' , and l= 0.01 cm·H2O·L¯1•s² ii. Two-compartment model: Rc = 1cm·H2O•S•L', Rp1,2 = 0.5 cm-H2O•s·L, Cp1.2=0.2 L·cm·H2O', and l= 0.01 cm·H2O·L-l·s² Mead model: R. = 1cm•H2O•s·L', R, = 0.5 cm:H2O-s·L', C1 =0.2 L·cm·H2O', C,=0.2 L-cm·H2O', C, =0.005 L·cm·H2O', and I= 0.01 cm·H2O•L¯l•s² iii. %3! %3D iv.
b. Using Simulink, simulate the transfer function airflow response, Q(t) (air entering respiratory system) for a sine wave input pressure Pao(1)= 2.5 cm·H½O (i.e. 5 cm·H2O peak-to-peak) at 15 breaths min' (or 0.25 Hz) for each lung model. Use the following parameters: i. RC model: R= 1cm:H2O•s·L·' and C=0.2 L·cm·H20l RIC model: R= 1cm·H2O•s·L·', C= 0.2 L·cm·H2O' , and l= 0.01 cm·H2O·L¯1•s² ii. Two-compartment model: Rc = 1cm·H2O•S•L', Rp1,2 = 0.5 cm-H2O•s·L, Cp1.2=0.2 L·cm·H2O', and l= 0.01 cm·H2O·L-l·s² Mead model: R. = 1cm•H2O•s·L', R, = 0.5 cm:H2O-s·L', C1 =0.2 L·cm·H2O', C,=0.2 L-cm·H2O', C, =0.005 L·cm·H2O', and I= 0.01 cm·H2O•L¯l•s² iii. %3! %3D iv.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![b. Using Simulink, simulate the transfer function airflow response, Q(t) (air entering respiratory
system) for a sine wave input pressure Pao(t)= 2.5 cm·H2O (i.e. 5 cm·H2O peak-to-peak) at 15
breaths min' (or 0.25 Hz) for each lung model. Use the following parameters:
-1
i.
RC model: R= 1cm·H2O's L' and C=0.2 L·cm·H2O¯
RIC model: R= 1cm·H2O's·L', C= 0.2 L·cm·H2O¯ , and I= 0.01 cm·H2O L-s²
Two-compartment model: R. = lcm H2O's L', Rp1,2 = 0.5 cm·H2O•s·L', Cp1,2=0.2
L·cm·H2O', and I= 0.01 cm H2O·L-•s²
Mead model: R. = 1cm·H2O•s L', Rp = 0.5 cm:H2O•s·L', C1 =0.2 L·cm·H2O', Cw=0.2
L·cm·H2O-', C, =0.005 L·cm·H2O', and I= 0.01 cm H2O·L-1·s²
ii.
iii.
iv.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb57dd654-a946-41df-ba53-580ad171851b%2F2f6ee98d-40ba-4bc3-8c74-8fc22e055635%2Fhko7fld_processed.png&w=3840&q=75)
Transcribed Image Text:b. Using Simulink, simulate the transfer function airflow response, Q(t) (air entering respiratory
system) for a sine wave input pressure Pao(t)= 2.5 cm·H2O (i.e. 5 cm·H2O peak-to-peak) at 15
breaths min' (or 0.25 Hz) for each lung model. Use the following parameters:
-1
i.
RC model: R= 1cm·H2O's L' and C=0.2 L·cm·H2O¯
RIC model: R= 1cm·H2O's·L', C= 0.2 L·cm·H2O¯ , and I= 0.01 cm·H2O L-s²
Two-compartment model: R. = lcm H2O's L', Rp1,2 = 0.5 cm·H2O•s·L', Cp1,2=0.2
L·cm·H2O', and I= 0.01 cm H2O·L-•s²
Mead model: R. = 1cm·H2O•s L', Rp = 0.5 cm:H2O•s·L', C1 =0.2 L·cm·H2O', Cw=0.2
L·cm·H2O-', C, =0.005 L·cm·H2O', and I= 0.01 cm H2O·L-1·s²
ii.
iii.
iv.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY