Automotive assembly plants emit particulate matter as a waste product. This generates a cost to society that is not paid for by the firm; therefore, pollution is a negative externality of vehicle production. Suppose the U.S. government wants to correct this market failure by getting firms to internalize the cost of pollution. To do this, the government can charge firms for pollution rights (the right to emit a given quantity of particulate matter). The following graph shows the daily demand for pollution rights. Use the graph input tool to help you answer the following questions. You will not be graded on any changes you make to this graph. Note: Once you enter a value in a white field, the graph and any corresponding amounts in each grey field will change accordingly. PRICE (Dollars per ton) 56 49 42 35 28 21 22222 70 63 Demand 14 7 0 0 10 20 30 40 50 60 70 80 90 100 QUANTITY (Millions of tons) Graph Input Tool Daily Demand for Pollution Rights Price 7 (Dollars per ton) Quantity Demanded 90 (Millions of tons) (? Suppose the government has determined that the socially optimal quantity of particulate matter is 30 million tons per day. One way governments can charge firms for pollution rights is by imposing a per-unit tax on emissions. A tax (or price in this case) of $ of particulate matter emitted will achieve the desired level of pollution. per ton Now suppose the U.S. government does not know the demand curve for pollution and, therefore, cannot determine the optimal tax to achieve the desired level of pollution. Instead, it auctions off tradable pollution permits. Each permit entitles its owner to emit one ton of particulate matter per day. To achieve the socially optimal quantity of pollution, the government auctions off 30 million pollution permits. Given this quantity of permits, the price for each permit in the market for pollution rights will be $ The previous analysis hinges on the government having good information regarding either the demand for pollution permits or the optimal level of pollution (or both). Given that the appropriate policy (tradable permits or corrective taxes) can depend on the available information and the policy goal, consider the following scenario. Suppose the government knows the optimal quantity of pollution as well as how much it costs a particular polluting firm to reduce pollution at each quantity. If this is all the information the government has, which solution to reduce pollution is appropriate? Check all that apply. Corrective taxes Tradable permits
Automotive assembly plants emit particulate matter as a waste product. This generates a cost to society that is not paid for by the firm; therefore, pollution is a negative externality of vehicle production. Suppose the U.S. government wants to correct this market failure by getting firms to internalize the cost of pollution. To do this, the government can charge firms for pollution rights (the right to emit a given quantity of particulate matter). The following graph shows the daily demand for pollution rights. Use the graph input tool to help you answer the following questions. You will not be graded on any changes you make to this graph. Note: Once you enter a value in a white field, the graph and any corresponding amounts in each grey field will change accordingly. PRICE (Dollars per ton) 56 49 42 35 28 21 22222 70 63 Demand 14 7 0 0 10 20 30 40 50 60 70 80 90 100 QUANTITY (Millions of tons) Graph Input Tool Daily Demand for Pollution Rights Price 7 (Dollars per ton) Quantity Demanded 90 (Millions of tons) (? Suppose the government has determined that the socially optimal quantity of particulate matter is 30 million tons per day. One way governments can charge firms for pollution rights is by imposing a per-unit tax on emissions. A tax (or price in this case) of $ of particulate matter emitted will achieve the desired level of pollution. per ton Now suppose the U.S. government does not know the demand curve for pollution and, therefore, cannot determine the optimal tax to achieve the desired level of pollution. Instead, it auctions off tradable pollution permits. Each permit entitles its owner to emit one ton of particulate matter per day. To achieve the socially optimal quantity of pollution, the government auctions off 30 million pollution permits. Given this quantity of permits, the price for each permit in the market for pollution rights will be $ The previous analysis hinges on the government having good information regarding either the demand for pollution permits or the optimal level of pollution (or both). Given that the appropriate policy (tradable permits or corrective taxes) can depend on the available information and the policy goal, consider the following scenario. Suppose the government knows the optimal quantity of pollution as well as how much it costs a particular polluting firm to reduce pollution at each quantity. If this is all the information the government has, which solution to reduce pollution is appropriate? Check all that apply. Corrective taxes Tradable permits
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images
Recommended textbooks for you
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education