a²u If consider the problem 3- -du 00 ax² with boundary conditions u(0, t)=0 and u(2, t) = 0 and initial condition u(x,0) = 5. If x(x) = A cos(xx) + B sin(ax) and T(t) = Ce-3at are the solutions of separated equations when separation of variable constant is λ=a² > 0. Then the general solution is: O u(x,t) = Σ n = 1 u(x,t)= Σ n = 1 u(x,t) = Σ n=1 5(1 − (− 1)") nπ u(x,t) = Σ n=1 10(1-(-1)") ηπ 2(1-(-1)") 5nπ e u(x,t)= Σ 5(1 + (−1)″) n=1 2nπ -2n²x², 9 e e 10(1-(-1)") nπ 4n² ²₁² 3 e "sin(x) -3n²π²₁ 2 e ηπ =sin(x) -3n²π²₁ 4 cos(x) "sin (1 x) -3n²² 4 * sin(x)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
a²u
If consider the problem 3-
24.c 0<x<2,t>0
дх2
with boundary conditions u(0, t) = 0 and u(2, 1) = 0
and initial condition u(x,0)=5.
If x(x) = A cos(xx) + B sin(ax) and T(t) = Ce-3at are the solutions of separated equations
when separation of variable constant is λ=a² >0.
Then the general solution is:
O
u(x,t) = Σ
n = 1
u(x,t)= Σ
n=1
u(x,t) = Σ
n=1
5(1 − (− 1)″)
nπ
u(x,t) = Σ
n=1
e
10(1-(-1)")
nπt
2(1-(-1))
5nπ
-2n²x²,
9
e
10(1-(-1)")
nπ
u(x,t)= Σ 5(1 + (−1)″) -
e
n=1
2nπ
²²
3
e
"sin(x)
-3n²π²₁
2
e
-3n²π²₁
4
sin(x)
cos(x)
-3n²²
4
* sin(x)
* sin(x)
Transcribed Image Text:a²u If consider the problem 3- 24.c 0<x<2,t>0 дх2 with boundary conditions u(0, t) = 0 and u(2, 1) = 0 and initial condition u(x,0)=5. If x(x) = A cos(xx) + B sin(ax) and T(t) = Ce-3at are the solutions of separated equations when separation of variable constant is λ=a² >0. Then the general solution is: O u(x,t) = Σ n = 1 u(x,t)= Σ n=1 u(x,t) = Σ n=1 5(1 − (− 1)″) nπ u(x,t) = Σ n=1 e 10(1-(-1)") nπt 2(1-(-1)) 5nπ -2n²x², 9 e 10(1-(-1)") nπ u(x,t)= Σ 5(1 + (−1)″) - e n=1 2nπ ²² 3 e "sin(x) -3n²π²₁ 2 e -3n²π²₁ 4 sin(x) cos(x) -3n²² 4 * sin(x) * sin(x)
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,