Find the general solution of the nonhomogeneous equation y4) + 2 y "+y=cos( 3 x) + 2 1 a) y =C, cos(x) + C, sin (x) + C,ecos(x) + C, e' sin(x) + 2+ cos( 3x) 64 b) O y=C, e'+ C,xe° + C, cos(x) + C, sin(x) – - 64 cos( 3x) c) O y=C, e'+ C,xe*+ C, cos(x) + C, sin(x) + 2 + sin(3x) d) O y=C, cos(x) + C, e+C,x cos(x) + C,x sin(x) – 2 1 cos( 3x) 64 y =C, cos(x) + C, sin(x) + C,x cos(x) + C, x sin(x) + 2+ 1 cos( 3x) 4 64 f) O None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct!

Find the general solution of the nonhomogeneous equation
y4) + 2 y "+y=cos( 3 x) + 2
1
a)
y =C, cos(x) + C, sin (x) + C,ecos(x) + C, e' sin(x) + 2+
cos( 3x)
64
b) O y=C, e'+ C,xe° + C, cos(x) + C, sin(x) – -
64
cos( 3x)
c) O y=C, e'+ C,xe*+ C, cos(x) + C, sin(x) + 2 +
sin(3x)
d) O y=C, cos(x) + C, e+C,x cos(x) + C,x sin(x) – 2
1
cos( 3x)
64
y =C, cos(x) + C, sin(x) + C,x cos(x) + C, x sin(x) + 2+
1
cos( 3x)
4
64
f) O None of the above.
Transcribed Image Text:Find the general solution of the nonhomogeneous equation y4) + 2 y "+y=cos( 3 x) + 2 1 a) y =C, cos(x) + C, sin (x) + C,ecos(x) + C, e' sin(x) + 2+ cos( 3x) 64 b) O y=C, e'+ C,xe° + C, cos(x) + C, sin(x) – - 64 cos( 3x) c) O y=C, e'+ C,xe*+ C, cos(x) + C, sin(x) + 2 + sin(3x) d) O y=C, cos(x) + C, e+C,x cos(x) + C,x sin(x) – 2 1 cos( 3x) 64 y =C, cos(x) + C, sin(x) + C,x cos(x) + C, x sin(x) + 2+ 1 cos( 3x) 4 64 f) O None of the above.
Expert Solution
Step 1

We will find out the required solution.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,