(Astronomy) PSR1913+16 Problem III. As the shape of the graph shown is not skewed, the orbit can be assumed circular. Also assume the system is viewed edge-on (that is, the orbital system is not inclined to the observer). Using these assumptions, the maximum radial velocities, and the orbital period T = 7.75 hours, find the orbital radii of the stars from the center of mass. (Hints: The figures below may be helpful. Use v = 2πr/P, where v is velocity, P is period, and r is radius. Note: redshifts have positive radial velocities values in the upper figure, whereas blueshifts have negative radial velocity values.)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

(Astronomy)

PSR1913+16 Problem III.

As the shape of the graph shown is not skewed, the orbit can be assumed circular. Also assume the system is viewed edge-on (that is, the orbital system is not inclined to the observer). Using these assumptions, the maximum radial velocities, and the orbital period T = 7.75 hours, find the orbital radii of the stars from the center of mass. (Hints: The figures below may be helpful. Use v = 2πr/P, where v is velocity, P is period, and r is radius. Note: redshifts have positive radial velocities values in the upper figure, whereas blueshifts have negative radial velocity values.)

100
-100
-200
-300
5
10
Time (hours)
Pulsar
Center of mass
(a) The radial velocity of pulsar PSR 1913+16 can be found from the Dop-
pler shifts in its pulsation. (b) Analysis of the radial velocity curve allows
astronomers to determine the pulsar's orbit. Here the center of mass does
not appear to be at a focus of the elliptical orbit because the orbit is
inclined to the line of sight from Earth.
Radlal velocity (km/s)
Transcribed Image Text:100 -100 -200 -300 5 10 Time (hours) Pulsar Center of mass (a) The radial velocity of pulsar PSR 1913+16 can be found from the Dop- pler shifts in its pulsation. (b) Analysis of the radial velocity curve allows astronomers to determine the pulsar's orbit. Here the center of mass does not appear to be at a focus of the elliptical orbit because the orbit is inclined to the line of sight from Earth. Radlal velocity (km/s)
Star B
Center of mass
Star A
Transcribed Image Text:Star B Center of mass Star A
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Relativistic speed and time
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON