Assume that air is an ideal gas under a uniform gravitational field, so that the potential energy of a molecule of mass m at altitude z is mgz. Show that the distribution of molecules varies with altitude as given by the distribution function f(z) dz = Cz exp(-βmgz) dz and that the normalization constant Cz= mg/kT. This distribution is referred to as the law of atmospheres.
Assume that air is an ideal gas under a uniform gravitational field, so that the potential energy of a molecule of mass m at altitude z is mgz. Show that the distribution of molecules varies with altitude as given by the distribution function f(z) dz = Cz exp(-βmgz) dz and that the normalization constant Cz= mg/kT. This distribution is referred to as the law of atmospheres.
Related questions
Question
Assume that air is an ideal gas under a uniform gravitational field, so that the potential energy of a molecule of mass m at altitude z is mgz. Show that the distribution of molecules varies with altitude as given by the distribution function f(z) dz = Cz exp(-βmgz) dz and that the normalization constant Cz= mg/kT. This distribution is referred to as the law of atmospheres.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
