Assume that adults have IQ scores that are normally distributed with a mean of μ= 105 and a standard deviation σ = 20. Find the probability that a randomly selected adult has an IQ between 90 and 120. Click to view page 1 of the table. Click to view page 2 of the table. Standard Normal Table (Page 2) The probability that a randomly selected adult has an IQ between 90 and 120 is (Type an integer or decimal rounded to four decimal places as needed.) POSITIVE Z Scores Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 5040 5080 5120 5160 5199 5239 5279 5319 5359 0.1 .5398 5438 5478 5517 5557 5596 5636 5675 5714 5753 0.2 5793 5832 5871 5910 5948 5987 .6026 6064 6103 .6141 0.3 .6179 6217 6255 .6293 .6331 6368 6406 6443 6480 .6517 0.4 .6554 6591 6628 .6664 .6700 .6736 6772 .6808 6844 .6879 0.5 .6915 6950 6985 7019 .7054 .7088 7123 7157 7190 7224 0.6 .7257 7291 .7324 7357 7389 7422 7454 7486 7517 7549 0,7 .7580 .7611 .7642 7673 7704 7734 7764 7794 .7823 .7852 0.8 .7881 7910 7939 7967 7995 8023 8051 8078 8106 8133 0.9 8159 .8186 8212 8238 8264 8289 .8315 8340 .8365 8389 10 8413 8438 8461 8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 8665 8686 8708 8729 .8749 8770 8790 8810 8830 1.2 .8849 .8869 8888 .8907 8925 8944 .8962 8980 .8997 9015 1.3 .9032 9049 9066 .9082 9099 9115 9131 9147 9162 9177 1.4 9192 .9207 9222 9236 9251 9265 9279 9292 9306 9319 1.5 .9332 9345 9357 9370 9382 9394 9406 9418 9429 9441 1.6 9452 9463 9474 9484 9495- 9505 9515 9525 9535 9545 1,7 .9554 .9564 9573 .9582 .9591 A 9599 .9608 9616 .9625 9633 1.8 .9641 .9649 .9656 .9664 .9671 9678 .9686 9693 9699 9706 1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 .9767 2.0 9772 9778 9783 9788 .9793 9798 .9803 9808 9812 9817 Assume that adults have IQ scores that are normally distributed with a mean of μ= 105 and a standard deviation σ = 20. Find the probability that a randomly selected adult has an IQ between 90 and 120. Click to view page 1 of the table. Click to view page 2 of the table. The probability that a randomly selected adult has an IQ between 90 and 120 is (Type an integer or decimal rounded to four decimal places as needed.) Standard Normal Table (Page 1) NEGATIVE z Scores ° Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 02 .03 .04 .05 .06 .07 .08 .09 -3.50 and lower .0001 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 0003 0002 -3.3 .0005 .0005 .0005 .0004 .0004 .0004 0004 .0004 0004 .0003 -3.2 .0007 0007 0006 0006 0006 .0006 0006 .0005 .0005 0005 -3.1 0010 .0009 .0009 .0009 .0008 .0008 .0008 0008 .0007 .0007 -3.0 .0013 0013 0013 .0012 0012 .0011 .com .0011 0010 0010 -29 .0019 0018 .0018 .0017 .0016 .0016 0015 .0015 .0014 .0014 -2.8 .0026 .0025 .0024 .0023 0023 .0022 0021 .0021 .0020 0019 -2.7 .0035 .0034 .0033 .0032 0031 .0030 0029 .0028 .0027 0026 -2.6 0047 0045 .0044 .0043 .0041 .0040 0039 .0038 0037 0036 -2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 . .0049 .0048 -2.4 .0082 .0080 0078 .0075 .0073 .0071 0069 .0068 .0066 .0064 -2.3 .0107 0104 0102 .0099 .0096 .0094 0091 .0089 .0087 .0084 -2.2 .0139 0136 .0132 0129 0125 0122 0119 0116 0113 0110 -2.1 .0179 0174 0170 .0166 0162 .0158 0154 0150 0146 0143 -2.0 .0228 0222 .0217 .0212 0207 .0202 0197 0192 0188 0183 -1.9 .0287 0281 0274 .0268 .0262 .0256 0250 .0244 0239 .0233 -1.8 .0359 .0351 .0344 .0336 .0329 .0322 0314 .0307 .0301 0294 -1.7 0446 .0436 0427 0418 0409 .0401 0392 .0384 .0375 .0367

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
Assume that adults have IQ scores that are normally distributed with a mean of μ= 105 and a standard deviation σ = 20. Find the probability that a randomly selected adult has an IQ between 90 and
120.
Click to view page 1 of the table. Click to view page 2 of the table.
Standard Normal Table (Page 2)
The probability that a randomly selected adult has an IQ between 90 and 120 is
(Type an integer or decimal rounded to four decimal places as needed.)
POSITIVE Z Scores
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.00
.01
02
.03
.04
.05
.06
.07
.08
.09
0.0
.5000
5040
5080
5120
5160
5199
5239
5279
5319
5359
0.1
.5398
5438
5478
5517
5557
5596
5636
5675
5714
5753
0.2
5793
5832
5871
5910
5948
5987
.6026
6064
6103
.6141
0.3
.6179
6217
6255
.6293
.6331
6368
6406
6443
6480
.6517
0.4
.6554
6591
6628
.6664
.6700
.6736
6772
.6808
6844
.6879
0.5
.6915
6950
6985
7019
.7054
.7088
7123
7157
7190
7224
0.6
.7257
7291
.7324
7357
7389
7422
7454
7486
7517
7549
0,7
.7580
.7611
.7642
7673
7704
7734
7764
7794
.7823
.7852
0.8
.7881
7910
7939
7967
7995
8023
8051
8078
8106
8133
0.9
8159
.8186
8212
8238
8264
8289
.8315
8340
.8365
8389
10
8413
8438
8461
8485
.8508
.8531
.8554
.8577
.8599
.8621
1.1
.8643
8665
8686
8708
8729
.8749
8770
8790
8810
8830
1.2
.8849
.8869
8888
.8907
8925
8944
.8962
8980
.8997
9015
1.3
.9032
9049
9066
.9082
9099
9115
9131
9147
9162
9177
1.4
9192
.9207
9222
9236
9251
9265
9279
9292
9306
9319
1.5
.9332
9345
9357
9370
9382
9394
9406
9418
9429
9441
1.6
9452
9463
9474
9484
9495- 9505
9515
9525
9535
9545
1,7
.9554
.9564
9573
.9582
.9591 A 9599
.9608
9616
.9625
9633
1.8
.9641
.9649
.9656
.9664
.9671
9678
.9686
9693
9699
9706
1.9
9713
9719
9726
9732
9738
9744
9750
9756
9761
.9767
2.0
9772
9778
9783
9788
.9793
9798
.9803
9808
9812
9817
Transcribed Image Text:Assume that adults have IQ scores that are normally distributed with a mean of μ= 105 and a standard deviation σ = 20. Find the probability that a randomly selected adult has an IQ between 90 and 120. Click to view page 1 of the table. Click to view page 2 of the table. Standard Normal Table (Page 2) The probability that a randomly selected adult has an IQ between 90 and 120 is (Type an integer or decimal rounded to four decimal places as needed.) POSITIVE Z Scores Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 5040 5080 5120 5160 5199 5239 5279 5319 5359 0.1 .5398 5438 5478 5517 5557 5596 5636 5675 5714 5753 0.2 5793 5832 5871 5910 5948 5987 .6026 6064 6103 .6141 0.3 .6179 6217 6255 .6293 .6331 6368 6406 6443 6480 .6517 0.4 .6554 6591 6628 .6664 .6700 .6736 6772 .6808 6844 .6879 0.5 .6915 6950 6985 7019 .7054 .7088 7123 7157 7190 7224 0.6 .7257 7291 .7324 7357 7389 7422 7454 7486 7517 7549 0,7 .7580 .7611 .7642 7673 7704 7734 7764 7794 .7823 .7852 0.8 .7881 7910 7939 7967 7995 8023 8051 8078 8106 8133 0.9 8159 .8186 8212 8238 8264 8289 .8315 8340 .8365 8389 10 8413 8438 8461 8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 8665 8686 8708 8729 .8749 8770 8790 8810 8830 1.2 .8849 .8869 8888 .8907 8925 8944 .8962 8980 .8997 9015 1.3 .9032 9049 9066 .9082 9099 9115 9131 9147 9162 9177 1.4 9192 .9207 9222 9236 9251 9265 9279 9292 9306 9319 1.5 .9332 9345 9357 9370 9382 9394 9406 9418 9429 9441 1.6 9452 9463 9474 9484 9495- 9505 9515 9525 9535 9545 1,7 .9554 .9564 9573 .9582 .9591 A 9599 .9608 9616 .9625 9633 1.8 .9641 .9649 .9656 .9664 .9671 9678 .9686 9693 9699 9706 1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 .9767 2.0 9772 9778 9783 9788 .9793 9798 .9803 9808 9812 9817
Assume that adults have IQ scores that are normally distributed with a mean of μ= 105 and a standard deviation σ = 20. Find the probability that a randomly selected adult has an IQ between 90 and
120.
Click to view page 1 of the table. Click to view page 2 of the table.
The probability that a randomly selected adult has an IQ between 90 and 120 is
(Type an integer or decimal rounded to four decimal places as needed.)
Standard Normal Table (Page 1)
NEGATIVE z Scores
°
Standard Normal (z) Distribution: Cumulative Area from the LEFT
.00
.01
02
.03
.04
.05
.06
.07
.08
.09
-3.50
and
lower
.0001
-3.4
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
0003
0002
-3.3
.0005
.0005
.0005
.0004
.0004
.0004
0004
.0004
0004
.0003
-3.2
.0007
0007
0006
0006
0006
.0006
0006
.0005
.0005
0005
-3.1
0010
.0009
.0009
.0009
.0008
.0008
.0008
0008
.0007
.0007
-3.0
.0013
0013
0013
.0012
0012
.0011
.com
.0011
0010
0010
-29
.0019
0018
.0018
.0017
.0016
.0016
0015
.0015
.0014
.0014
-2.8
.0026
.0025
.0024
.0023
0023
.0022
0021
.0021
.0020
0019
-2.7
.0035
.0034
.0033
.0032
0031
.0030
0029
.0028
.0027
0026
-2.6
0047
0045
.0044
.0043
.0041
.0040
0039
.0038
0037
0036
-2.5
.0062
.0060
.0059
.0057
.0055
.0054
.0052
.0051
. .0049
.0048
-2.4
.0082
.0080
0078
.0075
.0073
.0071
0069
.0068
.0066
.0064
-2.3
.0107
0104
0102
.0099
.0096
.0094
0091
.0089
.0087
.0084
-2.2
.0139
0136
.0132
0129
0125
0122
0119
0116
0113
0110
-2.1
.0179
0174
0170
.0166
0162
.0158
0154
0150
0146
0143
-2.0
.0228
0222
.0217
.0212
0207
.0202
0197
0192
0188
0183
-1.9
.0287
0281
0274
.0268
.0262
.0256
0250
.0244
0239
.0233
-1.8
.0359
.0351
.0344
.0336
.0329
.0322
0314
.0307
.0301
0294
-1.7
0446
.0436
0427
0418
0409
.0401
0392
.0384
.0375
.0367
Transcribed Image Text:Assume that adults have IQ scores that are normally distributed with a mean of μ= 105 and a standard deviation σ = 20. Find the probability that a randomly selected adult has an IQ between 90 and 120. Click to view page 1 of the table. Click to view page 2 of the table. The probability that a randomly selected adult has an IQ between 90 and 120 is (Type an integer or decimal rounded to four decimal places as needed.) Standard Normal Table (Page 1) NEGATIVE z Scores ° Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 02 .03 .04 .05 .06 .07 .08 .09 -3.50 and lower .0001 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 0003 0002 -3.3 .0005 .0005 .0005 .0004 .0004 .0004 0004 .0004 0004 .0003 -3.2 .0007 0007 0006 0006 0006 .0006 0006 .0005 .0005 0005 -3.1 0010 .0009 .0009 .0009 .0008 .0008 .0008 0008 .0007 .0007 -3.0 .0013 0013 0013 .0012 0012 .0011 .com .0011 0010 0010 -29 .0019 0018 .0018 .0017 .0016 .0016 0015 .0015 .0014 .0014 -2.8 .0026 .0025 .0024 .0023 0023 .0022 0021 .0021 .0020 0019 -2.7 .0035 .0034 .0033 .0032 0031 .0030 0029 .0028 .0027 0026 -2.6 0047 0045 .0044 .0043 .0041 .0040 0039 .0038 0037 0036 -2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 . .0049 .0048 -2.4 .0082 .0080 0078 .0075 .0073 .0071 0069 .0068 .0066 .0064 -2.3 .0107 0104 0102 .0099 .0096 .0094 0091 .0089 .0087 .0084 -2.2 .0139 0136 .0132 0129 0125 0122 0119 0116 0113 0110 -2.1 .0179 0174 0170 .0166 0162 .0158 0154 0150 0146 0143 -2.0 .0228 0222 .0217 .0212 0207 .0202 0197 0192 0188 0183 -1.9 .0287 0281 0274 .0268 .0262 .0256 0250 .0244 0239 .0233 -1.8 .0359 .0351 .0344 .0336 .0329 .0322 0314 .0307 .0301 0294 -1.7 0446 .0436 0427 0418 0409 .0401 0392 .0384 .0375 .0367
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman