Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Finding Bases for Null Space, Column Space, and Row Space**
Given that matrices \( A \) and \( B \) are row equivalent, we need to find the bases for the Null space (Nul \( A \)), Column space (Col \( A \)), and Row space (Row \( A \)) of matrix \( A \).
The matrices are given as:
\[
A = \begin{bmatrix}
-2 & 8 & -2 & -8 \\
2 & -12 & -4 & 2 \\
-3 & 16 & 3 & -6
\end{bmatrix}, \quad
B = \begin{bmatrix}
1 & 0 & 7 & 10 \\
0 & 4 & 6 & 6 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
### Null Space (Nul \( A \))
To find the basis for the null space, we need to solve \( B \mathbf{x} = \mathbf{0} \).
Given matrix \( B \):
\[
B = \begin{bmatrix}
1 & 0 & 7 & 10 \\
0 & 4 & 6 & 6 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
Transform \( B \) to its row-reduced echelon form (if it's not already). In this case:
\[
B = \begin{bmatrix}
1 & 0 & 7 & 10 \\
0 & 4 & 6 & 6 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
From this, we can see that the null space is spanned by non-pivot columns.
Let \( \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \):
\[ x_1 + 7x_3 + 10x_4 = 0 \]
\[ 4x_2 + 6x_3 + 6x_4 = 0 \]
Solve for \( x_1 \) and \( x_2 \). Set \( x_3 = t \) and \( x_4 = s \):
\[ x_1 = -7t - 10s \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff893ad80-e3fa-4d69-87b2-5d427e54a923%2F2002894d-7373-4576-adf9-dddfcc0bc65b%2F194b5g_processed.png&w=3840&q=75)
Transcribed Image Text:**Finding Bases for Null Space, Column Space, and Row Space**
Given that matrices \( A \) and \( B \) are row equivalent, we need to find the bases for the Null space (Nul \( A \)), Column space (Col \( A \)), and Row space (Row \( A \)) of matrix \( A \).
The matrices are given as:
\[
A = \begin{bmatrix}
-2 & 8 & -2 & -8 \\
2 & -12 & -4 & 2 \\
-3 & 16 & 3 & -6
\end{bmatrix}, \quad
B = \begin{bmatrix}
1 & 0 & 7 & 10 \\
0 & 4 & 6 & 6 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
### Null Space (Nul \( A \))
To find the basis for the null space, we need to solve \( B \mathbf{x} = \mathbf{0} \).
Given matrix \( B \):
\[
B = \begin{bmatrix}
1 & 0 & 7 & 10 \\
0 & 4 & 6 & 6 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
Transform \( B \) to its row-reduced echelon form (if it's not already). In this case:
\[
B = \begin{bmatrix}
1 & 0 & 7 & 10 \\
0 & 4 & 6 & 6 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
From this, we can see that the null space is spanned by non-pivot columns.
Let \( \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \):
\[ x_1 + 7x_3 + 10x_4 = 0 \]
\[ 4x_2 + 6x_3 + 6x_4 = 0 \]
Solve for \( x_1 \) and \( x_2 \). Set \( x_3 = t \) and \( x_4 = s \):
\[ x_1 = -7t - 10s \
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education