Exercise 11.2.3. (a) Let the entries of A and B be given by aij = 2¹+ and bij = 2-(i+j) for 1 ≤i, j≤ 50. Let C = AB. Compute c7,11. (b) Let the entries of A and B be given by aij 1≤i, j≤ 22. Let C = AB. Compute C5,4. = : 3i+j and bij = 4−(i+j) for (c) Let the entries of A and B be given by a₁.j = r²+j and bij = s¯(i+j) for 1 ≤i, j≤ N, where r and s are arbitrary real numbers. Let C = AB. Give a general formula for cij, 1 ≤ i, j≤N. (Note the same formula works if r and s are taken as complex numbers.)
Exercise 11.2.3. (a) Let the entries of A and B be given by aij = 2¹+ and bij = 2-(i+j) for 1 ≤i, j≤ 50. Let C = AB. Compute c7,11. (b) Let the entries of A and B be given by aij 1≤i, j≤ 22. Let C = AB. Compute C5,4. = : 3i+j and bij = 4−(i+j) for (c) Let the entries of A and B be given by a₁.j = r²+j and bij = s¯(i+j) for 1 ≤i, j≤ N, where r and s are arbitrary real numbers. Let C = AB. Give a general formula for cij, 1 ≤ i, j≤N. (Note the same formula works if r and s are taken as complex numbers.)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please do Part A and C and please show step by step and explain

Transcribed Image Text:Let's show how this formula works in a specific case. Suppose A is a
3 x 3 matrix and B is a 3 x 2 matrix as in our previous example, then the
result of the product AB is a 3 x 2 matrix that we can call C. Now suppose
we want to find the entry on the third row in the second column of C, then
we would compute:
3
€3,2 = 93,kbk,2
k=1
=a3,101,2 +03,2b2,2 + a3,3b3,2-
Sure enough, when we look at the long version we wrote earlier for the
product AB our result matches the entry on the second row, third column.
The above formula makes it possible to calculate individual matrix ele-
ments, without having to compute the entire matrix.

Transcribed Image Text:Exercise 11.2.3.
(a) Let the entries of A and B be given by aij
1 ≤i, j≤ 50. Let C = AB. Compute C7,11.
(b) Let the entries of A and B be given by aij
1 ≤i, j≤ 22. Let C = AB. Compute c5,4.
=
= 2i+j and bij = 2−(i+j) for
= 3i+j and bij
=
=
4-(i+j) for
=
(c) Let the entries of A and B be given by ajrit and bij = s-(i+1) for
1 ≤i, j≤ N, where r and s are arbitrary real numbers. Let C = AB.
Give a general formula for cij, 1 ≤ i, j≤ N. (Note the same formula
works if r and s are taken as complex numbers.)
Expert Solution

Step 1 Part (a)
Let A be 50 x 50 matrix and B be 50 x 50 matrix
A =[ (aij)] B = [(bij)]
ai,j = 2i+j bi,j = 2-(i+j)
C = AB is 50 x 50 matrix
The (7,11) th entry of C or c7, 11 is determined by sum of products of elements of 7 th row of A with the corresponding elements of 11th column of B
c7, 11 = a7, 1 b1 ,11 + a7,2 b2, 11 + a7,3 b3, 11 +......... + a7, 50 b50, 11
c7, 11 =
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

