As you will learn, carbon-14 (14C) is an unstable isotope of carbon. It has the same chemical properties and electronic structure as the much more abundant isotope carbon-12 (12C), but it has different nuclear properties. Its mass is 14 u, greater than that of carbon-12 because of the two extra neutrons in the carbon-14 nucleus. Assume the CO molecular potential energy is the same for both isotopes of carbon, and for carbon monoxide with carbon-12 atoms the frequency of the photon that causes the v = 0 to v = 1 transition is 6.42  1013 Hz and the moment of inertia is 1.46  10-46 kg · m2. (a) What is the vibrational frequency of 14CO? (b) What is the moment of inertia of 14CO? (c) What wavelengths of light can be absorbed by 14CO in the (v = 0, J = 10) state that will cause it to end up in the v = 1 level? _______µm (larger wavelength) _______µm (smaller wavelength)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question

As you will learn, carbon-14 (14C) is an unstable isotope of carbon. It has the same chemical properties and electronic structure as the much more abundant isotope carbon-12 (12C), but it has different nuclear properties. Its mass is 14 u, greater than that of carbon-12 because of the two extra neutrons in the carbon-14 nucleus. Assume the CO molecular potential energy is the same for both isotopes of carbon, and for carbon monoxide with carbon-12 atoms the frequency of the photon that causes the v = 0 to v = 1 transition is 6.42  1013 Hz and the moment of inertia is 1.46  10-46 kg · m2.

(a) What is the vibrational frequency of 14CO?

(b) What is the moment of inertia of 14CO?

(c) What wavelengths of light can be absorbed by 14CO in the (v = 0, J = 10) state that will cause it to end up in the v = 1 level?

_______µm (larger wavelength)
_______µm (smaller wavelength)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON