An oil of specific gravity 0.9 is flowing through a venturimeter with inlet diameter of 300 mm and throat diameter of 205 mm. A differential manometer connected to the inlet and throat of the venturimeter gives a difference in the reading of 27 cm of mercury. Take coefficient of discharge of the venturimeter (Cd) as 0.96. Find the following Inlet area of the Venturimeter (in m2) Answer for part 1 Throat area of the Venturimer (in m2) Answer for part 2 Differential pressure head 'h', (in m of oil) Answer for part 3 Discharge of oil through Venturimeter (in m3/s) Answer for part 4 Discharge of oil through Venturimeter (in Litre/s)
An oil of specific gravity 0.9 is flowing through a venturimeter with inlet diameter of 300 mm and throat diameter of 205 mm. A differential manometer connected to the inlet and throat of the venturimeter gives a difference in the reading of 27 cm of mercury. Take coefficient of discharge of the venturimeter (Cd) as 0.96. Find the following Inlet area of the Venturimeter (in m2) Answer for part 1 Throat area of the Venturimer (in m2) Answer for part 2 Differential pressure head 'h', (in m of oil) Answer for part 3 Discharge of oil through Venturimeter (in m3/s) Answer for part 4 Discharge of oil through Venturimeter (in Litre/s)
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
An oil of specific gravity 0.9 is flowing through a venturimeter with inlet diameter of 300 mm and throat diameter of 205 mm. A differential manometer connected to the inlet and throat of the venturimeter gives a difference in the reading of 27 cm of mercury.
Take coefficient of discharge of the venturimeter (Cd) as 0.96.
Find the following
Inlet area of the Venturimeter (in m2)
Answer for part 1
Throat area of the Venturimer (in m2)
Answer for part 2
Differential pressure head 'h', (in m of oil)
Answer for part 3
Discharge of oil through Venturimeter (in m3/s)
Answer for part 4
Discharge of oil through Venturimeter (in Litre/s)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY