The picture below depicts a system for delivering chocolate ganache in liquid form. The nozzle on the end of the hose requires 140 kPa of pressure to operate effectively. The hose is smooth plastic with an ID of 25 mm. The chocolate has a specific gravity of 1.1 and a dynamic viscosity of 2.0 X 10-3 Pa*s. If the length of the hose is 85 m and there is a change in height of 10 m, determine (a) the power delivered by the pump to the ganache and (b) the pressure at the outlet of the pump. Neglect the energy losses on the suction side of the pump. The flow rate is 85 L/min.
The picture below depicts a system for delivering chocolate ganache in liquid form. The nozzle on the end of the hose requires 140 kPa of pressure to operate effectively. The hose is smooth plastic with an ID of 25 mm. The chocolate has a specific gravity of 1.1 and a dynamic viscosity of 2.0 X 10-3 Pa*s. If the length of the hose is 85 m and there is a change in height of 10 m, determine (a) the power delivered by the pump to the ganache and (b) the pressure at the outlet of the pump. Neglect the energy losses on the suction side of the pump. The flow rate is 85 L/min.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
The picture below depicts a system for delivering chocolate ganache in liquid form. The
nozzle on the end of the hose requires 140 kPa of pressure to operate effectively. The
hose is smooth plastic with an ID of 25 mm. The chocolate has a specific gravity of 1.1
and a dynamic viscosity of 2.0 X 10-3 Pa*s. If the length of the hose is 85 m and there is a change in height of 10 m, determine
(a) the power delivered by the pump to the ganache and
(b) the pressure at the outlet of the pump.
Neglect the energy losses on the suction side of the pump. The flow rate is 85 L/min.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY