An oil flow through a 40 mm bore steel pipe with the thickness of 4 mm. The pipe is covered by 10 mm thickness of insulator with the thermal conductivity of 0.038 W/m.K as shown in Diagram 4b. The temperature of the oil in the pipe is 75°C and the ambient temperature is 17°C. The internal thermal conductivity of steel is 50 W/m.K and the inside and outside heat transfer coefficient are 300 W/m².C and 17 W/m².C respectively. Neglecting radiation, calculate the following: i. Rate of heat flow per meter length of the pipe ii. The temperature of the outside surface (Ts). Ts Oil 75°C Ambient temperature 17°C 40
An oil flow through a 40 mm bore steel pipe with the thickness of 4 mm. The pipe is covered by 10 mm thickness of insulator with the thermal conductivity of 0.038 W/m.K as shown in Diagram 4b. The temperature of the oil in the pipe is 75°C and the ambient temperature is 17°C. The internal thermal conductivity of steel is 50 W/m.K and the inside and outside heat transfer coefficient are 300 W/m².C and 17 W/m².C respectively. Neglecting radiation, calculate the following: i. Rate of heat flow per meter length of the pipe ii. The temperature of the outside surface (Ts). Ts Oil 75°C Ambient temperature 17°C 40
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:An oil flow through a 40 mm bore steel pipe with the thickness of 4 mm. The pipe is covered
by 10 mm thickness of insulator with the thermal conductivity of 0.038 W/m.K as shown
in Diagram 4b. The temperature of the oil in the pipe is 75°C and the ambient temperature
is 17°C. The internal thermal conductivity of steel is 50 W/m.K and the inside and outside
heat transfer coefficient are 300 W/m².C and 17 W/m?.C respectively. Neglecting
radiation, calculate the following:
i. Rate of heat flow per meter length of the pipe
ii. The temperature of the outside surface (Ts).
Ts
Ambient
Oil 75°C
temperature 17°C
40
Note : All dimensions are in mm/Nota: Semua dimensi adalah dalam mm
Diagram 4b/Rajah 4b
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY