An individual is nearsighted; his near point is 11.0 cm and his far point is 51.0 cm. (a) What lens power is needed to correct his nearsightedness? 1.96 X The response you submitted has the wrong sign. diopters (b) When the lenses are in use, what is this person's near point? 11 x cm Your response differs from the correct answer by more than 10% Double check your calculations

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
### Nearsightedness Correction Example

An individual is nearsighted; his near point is **11.0 cm** and his far point is **51.0 cm**.

#### (a) What lens power is needed to correct his nearsightedness?

**Submitted Answer:** 1.96 diopters ❌
**Feedback:** The response you submitted has the wrong sign.

#### (b) When the lenses are in use, what is this person’s near point?

**Submitted Answer:** 11 cm ❌
**Feedback:** Your response differs from the correct answer by more than 10%. Double-check your calculations.

---

### Explanation:

**(a) Correcting Nearsightedness**
To determine the correct lens power needed for a nearsighted person, use the formula for lens power \( P \):
\[ P = \frac{1}{f} \]
where \( f \) is the focal length. For a nearsighted person, the focal length is negative.

Given the far point \( d_{fp} \) is 51.0 cm:
\[ d_{fp} = -51 \text{ cm} \]
since the far point is behind the lens, indicating nearsightedness.

Convert the distance to meters:
\[ d_{fp} = -0.51 \text{ m} \]

Then:
\[ P = \frac{1}{-0.51} \approx -1.96 \text{ diopters} \]

The sign should be negative to indicate concave lenses, which correct nearsightedness.

**(b) Near Point with Corrective Lenses**
To find the new near point when corrective lenses are used, consider the formula:
\[ P = \frac{1}{d_{np}} + \frac{1}{d_{fp}} \]

However, since the incorrect answer is given:
1. The original calculation should be rechecked.
2. Apply proper near point formula considering lens power and new near point calculation.

For accurate results, double-check your calculations and ensure correct sign usage for distances.

---
Transcribed Image Text:### Nearsightedness Correction Example An individual is nearsighted; his near point is **11.0 cm** and his far point is **51.0 cm**. #### (a) What lens power is needed to correct his nearsightedness? **Submitted Answer:** 1.96 diopters ❌ **Feedback:** The response you submitted has the wrong sign. #### (b) When the lenses are in use, what is this person’s near point? **Submitted Answer:** 11 cm ❌ **Feedback:** Your response differs from the correct answer by more than 10%. Double-check your calculations. --- ### Explanation: **(a) Correcting Nearsightedness** To determine the correct lens power needed for a nearsighted person, use the formula for lens power \( P \): \[ P = \frac{1}{f} \] where \( f \) is the focal length. For a nearsighted person, the focal length is negative. Given the far point \( d_{fp} \) is 51.0 cm: \[ d_{fp} = -51 \text{ cm} \] since the far point is behind the lens, indicating nearsightedness. Convert the distance to meters: \[ d_{fp} = -0.51 \text{ m} \] Then: \[ P = \frac{1}{-0.51} \approx -1.96 \text{ diopters} \] The sign should be negative to indicate concave lenses, which correct nearsightedness. **(b) Near Point with Corrective Lenses** To find the new near point when corrective lenses are used, consider the formula: \[ P = \frac{1}{d_{np}} + \frac{1}{d_{fp}} \] However, since the incorrect answer is given: 1. The original calculation should be rechecked. 2. Apply proper near point formula considering lens power and new near point calculation. For accurate results, double-check your calculations and ensure correct sign usage for distances. ---
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Lens
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON