An electron is trapped in a square well 0.50 nm across (roughly five times a typical atomic diameter). (a) Find the ground-level energy E1-IDW if the well is infinitely deep. (b) Find the energy levels if the actual well depth U0 is six times the ground-level energy found in part (a). (c) Find the wavelength of the photon emitted when the electron makes a transition from the n = 2 level to the n = 1 level. In what region of the electromagnetic spectrum does the photon wavelength lie? (d) If the electron is in the n = 1 (ground) level and absorbs a photon, what is the minimum photon energy that will free the electron from the well? In what region of the spectrum does the wavelength of this photon lie?

icon
Related questions
Question

An electron is trapped in a square well 0.50 nm across (roughly five times a typical atomic diameter). (a) Find the ground-level energy E1-IDW if the well is infinitely deep. (b) Find the energy levels if the actual well depth U0 is six times the ground-level energy found in part (a). (c) Find the wavelength of the photon emitted when the electron makes a transition from the n = 2 level to the n = 1 level. In what region of the electromagnetic spectrum does the photon wavelength lie? (d) If the electron is in the n = 1 (ground) level and absorbs a photon, what is the minimum photon energy that will free the electron from the well? In what region of the spectrum does the wavelength of this photon lie?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps

Blurred answer