An aluminum alloy [E = 74 GPa; v = 0.33; a = 23.0 x 10-6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 265 mm, a cross-sectional area of A = 5300 mm², and a length of L= 4.2 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by AT = 57°C, the longitudinal normal strain in the plate is found to be 2920 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Ad. L P Answer: (a) P = i (b) Δd = i kN mm

Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN:9781337094740
Author:Segui, William T.
Publisher:Segui, William T.
Chapter1: Introduction
Section: Chapter Questions
Problem 1.5.6P: The data in Table 1.5.3 were obtained from a tensile test of a metal specimen with a rectangular...
icon
Related questions
icon
Concept explainers
Question
100%
An aluminum alloy [E = 74 GPa; v = 0.33; a = 23.0 x 10-6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 265 mm,
a cross-sectional area of A = 5300 mm², and a length of L= 4.2 m. The initial longitudinal normal strain in the plate is zero. After load P
is applied and the temperature of the plate has been increased by AT = 57°C, the longitudinal normal strain in the plate is found to be
2920 με. Determine:
(a) the magnitude of load P.
(b) the change in plate depth Ad.
L
P
Answer:
(a) P = i
(b) Δd =
i
kN
mm
Transcribed Image Text:An aluminum alloy [E = 74 GPa; v = 0.33; a = 23.0 x 10-6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 265 mm, a cross-sectional area of A = 5300 mm², and a length of L= 4.2 m. The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by AT = 57°C, the longitudinal normal strain in the plate is found to be 2920 με. Determine: (a) the magnitude of load P. (b) the change in plate depth Ad. L P Answer: (a) P = i (b) Δd = i kN mm
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Material Properties
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Steel Design (Activate Learning with these NEW ti…
Steel Design (Activate Learning with these NEW ti…
Civil Engineering
ISBN:
9781337094740
Author:
Segui, William T.
Publisher:
Cengage Learning
Materials Science And Engineering Properties
Materials Science And Engineering Properties
Civil Engineering
ISBN:
9781111988609
Author:
Charles Gilmore
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning