An airplane releases a ball as it flies parallel to the ground at a height of h= 285 m as shown in the figure. If the ball lands on the ground a horizontal distance equal to the height h from the release point, calculate the speed u of the plane. Neglect any effects due to air resistance, and use g = 9.81 m/s² for the acceleration due to gravity.
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
![estion 11 of 20 >
An airplane releases a ball as it flies parallel to the ground at a
height of h = 285 m as shown in the figure. If the ball lands
on the ground a horizontal distance equal to the height h from
the release point, calculate the speed u of the plane. Neglect
any effects due to air resistance, and use g = 9.81 m/s² for the
acceleration due to gravity.
m/s
V=
Check ANSW
Question Source: Freedman College Physics 3e | Publisher: Macmillan](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F114734e3-9b51-4d2d-a806-aeb751dfaf2b%2F2ef65721-3a0e-4ea0-8fbb-11911b01a645%2Fh58ruq2k_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)