An acid (HA) dissociates as follows: HA → H* + A minus Arrow should be interpreted as an equilibrium arrow. The pH of the 0.10 M solution of HA is 4.02. What is [H*]? Express your answer as a decimal, not an exponent. Please include a proper (abbreviated) unit.
Ionic Equilibrium
Chemical equilibrium and ionic equilibrium are two major concepts in chemistry. Ionic equilibrium deals with the equilibrium involved in an ionization process while chemical equilibrium deals with the equilibrium during a chemical change. Ionic equilibrium is established between the ions and unionized species in a system. Understanding the concept of ionic equilibrium is very important to answer the questions related to certain chemical reactions in chemistry.
Arrhenius Acid
Arrhenius acid act as a good electrolyte as it dissociates to its respective ions in the aqueous solutions. Keeping it similar to the general acid properties, Arrhenius acid also neutralizes bases and turns litmus paper into red.
Bronsted Lowry Base In Inorganic Chemistry
Bronsted-Lowry base in inorganic chemistry is any chemical substance that can accept a proton from the other chemical substance it is reacting with.
![### Acid Dissociation and pH Calculation
**An acid (HA) dissociates as follows:**
\[ \text{HA} \rightleftharpoons \text{H}^+ + \text{A}^- \]
(Note: The arrow indicates equilibrium)
**Given Data:**
- The pH of the 0.10 M solution of HA is 4.02.
**Problem:**
**What is the concentration of hydrogen ions \([\text{H}^+]\)?**
**Instructions:**
- Express your answer as a decimal, not an exponent.
- Please include a proper (abbreviated) unit.
**Solution:**
The concentration of hydrogen ions, \([\text{H}^+]\), can be calculated using the pH value. The relationship between pH and \([\text{H}^+]\) is given by the formula:
\[ \text{pH} = -\log[\text{H}^+] \]
Rearranging the formula to solve for \([\text{H}^+]\):
\[ [\text{H}^+] = 10^{-\text{pH}} \]
Using the provided pH value:
\[ [\text{H}^+] = 10^{-4.02} \]
Calculating the value:
\[ [\text{H}^+] = 0.000095 \, \text{M} \]
So, the hydrogen ion concentration is:
\[ [\text{H}^+] = 0.000095 \, \text{M} \]
Or, as a decimal:
\[ [\text{H}^+] = 9.5 \times 10^{-5} \, \text{M} \]
**Note:** Ensure to double-check the calculations with proper significant figures based on context and instructional requirements.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8c8d8a42-8de4-4466-9c46-ae253053e314%2Fc8c1af5e-112a-48d1-8334-5b6ab94fe01d%2Fhsidi1m.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)