Air is compressed in an adiabatic compressor. Inlet and outlet conditions are 120kPa, 30 oC and 20 m/s; 1.4 MPa, 530 oC and 80 m/s. The surrounding air temperature is 25 oC. The inlet cross-sectional area is 0.013 m2. Assume Cp = 1005 J/kgK, R = 287 J/kgK, k = 1.4. Enter the amount of heat gain by the compressor due to irreversibility resulting from the work transfer to the compressor in kW (correct up to two decimal places.) Use the reversible isothermal work transfer assumption to calculate the heat gain value.
Air is compressed in an adiabatic compressor. Inlet and outlet conditions are 120kPa, 30 oC and 20 m/s; 1.4 MPa, 530 oC and 80 m/s. The surrounding air temperature is 25 oC. The inlet cross-sectional area is 0.013 m2. Assume Cp = 1005 J/kgK, R = 287 J/kgK, k = 1.4. Enter the amount of heat gain by the compressor due to irreversibility resulting from the work transfer to the compressor in kW (correct up to two decimal places.) Use the reversible isothermal work transfer assumption to calculate the heat gain value.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Air is compressed in an adiabatic compressor. Inlet and outlet conditions are 120kPa, 30 oC and 20 m/s; 1.4 MPa, 530 oC and 80 m/s. The surrounding air temperature is 25 oC. The inlet cross-sectional area is 0.013 m2. Assume Cp = 1005 J/kgK, R = 287 J/kgK, k = 1.4.
Enter the amount of heat gain by the compressor due to irreversibility resulting from the work transfer to the compressor in kW (correct up to two decimal places.) Use the reversible isothermal work transfer assumption to calculate the heat gain value.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY