After a lot of hard work, a studio releases a new video game. The studio believes that the game will be liked by players. In particular, the studio claims that the mean player rating, μ, will be higher than 78. In a random sample of 36 players, the mean rating is 80.4. Assume the population standard deviation of the ratings is known to be 13.8. Is there enough evidence to support the claim that the mean player rating is higher than 78? Perform a hypothesis test, using the 0.05 level of significance. (a) State the null hypothesis Ho and the alternative hypothesis H₁. Ho: H₁:0 • 20.05 is the value that cuts off an area of 0.05 in the right tail. Standard Normal Distribution Step 1: Select one-tailed or two-tailed. O One-tailed O Two-tailed н Step 2: Enter the critical value(s). (Round to 3 decimal places.) ロ<ロ • The test statistic has a normal distribution and the value is given by z= Step 3: Enter the test statistic. (Round to 3 decimal places.) ロマロ X (b) Perform a hypothesis test. The test statistic has a normal distribution (so the test is a "Z-test"). Here is some other information to help you with your test. X OSO 0=0 0*0 O 04- 0.3+ O>O 0.2+ 0.1+ S X S (c) Based on your answer to part (b), choose what can be concluded, at the 0.05 level of significance, about the claim made by the studio. O Since the value of the test statistic lies in the rejection region, the null hypothesis is rejected. So, there is enough evidence to support the claim that the mean player rating is higher than 78. O Since the value of the test statistic lies in the rejection region, the null hypothesis is not rejected. So, there is not enough evidence to support the claim that the mean player rating is higher than 78. O Since the value of the test statistic doesn't lie in the rejection region, the null hypothesis is rejected. So, there is enough evidence to support the claim that the mean player rating is higher than 78. O Since the value of the test statistic doesn't lie in the rejection region, the null hypothesis is not rejected. So, there is not enough evidence to support the claim that the mean player rating is higher than 78. X
After a lot of hard work, a studio releases a new video game. The studio believes that the game will be liked by players. In particular, the studio claims that the mean player rating, μ, will be higher than 78. In a random sample of 36 players, the mean rating is 80.4. Assume the population standard deviation of the ratings is known to be 13.8. Is there enough evidence to support the claim that the mean player rating is higher than 78? Perform a hypothesis test, using the 0.05 level of significance. (a) State the null hypothesis Ho and the alternative hypothesis H₁. Ho: H₁:0 • 20.05 is the value that cuts off an area of 0.05 in the right tail. Standard Normal Distribution Step 1: Select one-tailed or two-tailed. O One-tailed O Two-tailed н Step 2: Enter the critical value(s). (Round to 3 decimal places.) ロ<ロ • The test statistic has a normal distribution and the value is given by z= Step 3: Enter the test statistic. (Round to 3 decimal places.) ロマロ X (b) Perform a hypothesis test. The test statistic has a normal distribution (so the test is a "Z-test"). Here is some other information to help you with your test. X OSO 0=0 0*0 O 04- 0.3+ O>O 0.2+ 0.1+ S X S (c) Based on your answer to part (b), choose what can be concluded, at the 0.05 level of significance, about the claim made by the studio. O Since the value of the test statistic lies in the rejection region, the null hypothesis is rejected. So, there is enough evidence to support the claim that the mean player rating is higher than 78. O Since the value of the test statistic lies in the rejection region, the null hypothesis is not rejected. So, there is not enough evidence to support the claim that the mean player rating is higher than 78. O Since the value of the test statistic doesn't lie in the rejection region, the null hypothesis is rejected. So, there is enough evidence to support the claim that the mean player rating is higher than 78. O Since the value of the test statistic doesn't lie in the rejection region, the null hypothesis is not rejected. So, there is not enough evidence to support the claim that the mean player rating is higher than 78. X
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman