A vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is used to maintain a space at -13°C by rejecting heat to ambient air at 27°C. R-134a enters the compressor at 100 kPa superheated by 6.4°C at a rate of 0.05 kg/s. The isentropic efficiency of the compressor is 85 percent. The refrigerant leaves the condenser at 39.4°C as a saturated liquid. Determine a) the rate of cooling provided b) the COP of the system c) the minimum power input required
A vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is used to maintain a space at -13°C by rejecting heat to ambient air at 27°C. R-134a enters the compressor at 100 kPa superheated by 6.4°C at a rate of 0.05 kg/s. The isentropic efficiency of the compressor is 85 percent. The refrigerant leaves the condenser at 39.4°C as a saturated liquid. Determine a) the rate of cooling provided b) the COP of the system c) the minimum power input required
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:A vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is used to maintain a
space at -13°C by rejecting heat to ambient air at 27°C. R-134a enters the compressor at 100 kPa
superheated by 6.4°℃ at a rate of 0.05 kg/s. The isentropic efficiency of the compressor is 85 percent.
The refrigerant leaves the condenser at 39.4ºC as a saturated liquid. Determine
a) the rate of cooling provided
b) the COP of the system
c) the minimum power input required
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY