A uniform ladder stands on a rough floor and rests against a frictionless wall as shown in the figure. N2 mg Since the floor is rough, it exerts both a normal force N, and a frictional force f, on the ladder. However, since the wall is frictionless, it exerts only a normal force N, on the ladder. The ladder has a length of L = 4.7 m, a weight of W, = 64.5 N, and rests against the wall a distance d = 3.75 m above the floor. If a person with a mass of m = 90 kg is standing on the ladder, determine the following. (a) the forces exerted on the ladder when the person is halfway up the ladder (Enter the magnitude only.) N1 N2 f, = N (b) the forces exerted on the ladder when the person is three-fourths of the way up the ladder (Enter the magnitude only.) N2 N.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%
A uniform ladder stands on a rough floor and rests against a frictionless wall as shown in the figure.
N2
mg
Since the floor is rough, it exerts both a normal force N, and a frictional force f, on the ladder. However, since the wall is frictionless, it
exerts only a normal force N, on the ladder. The ladder has a length of L = 4.7 m, a weight of W, = 64.5 N, and rests against the wall a
distance d = 3.75 m above the floor. If a person with a mass of m = 90 kg is standing on the ladder, determine the following.
(a) the forces exerted on the ladder when the person is halfway up the ladder (Enter the magnitude only.)
N1
N2
f, =
N
(b) the forces exerted on the ladder when the person is three-fourths of the way up the ladder (Enter the magnitude only.)
N2
N.
Transcribed Image Text:A uniform ladder stands on a rough floor and rests against a frictionless wall as shown in the figure. N2 mg Since the floor is rough, it exerts both a normal force N, and a frictional force f, on the ladder. However, since the wall is frictionless, it exerts only a normal force N, on the ladder. The ladder has a length of L = 4.7 m, a weight of W, = 64.5 N, and rests against the wall a distance d = 3.75 m above the floor. If a person with a mass of m = 90 kg is standing on the ladder, determine the following. (a) the forces exerted on the ladder when the person is halfway up the ladder (Enter the magnitude only.) N1 N2 f, = N (b) the forces exerted on the ladder when the person is three-fourths of the way up the ladder (Enter the magnitude only.) N2 N.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Mechanical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON