A two stage cascade refrigeration system uses R-12 in the high pressure loop with a condenser temperature of 300C and -100C in the cascade condenser, and R-22 in the low pressure loop with a temperature in the cascade condenser of 00C and an evaporator temperature of -30 0C. Given that, h6 = 366 kJ/kg; h2= 421 kJ/kg. Determine the amount of ice (kg)for a 10 hrs operation if the initial temp of water is 31 0C to ice at --80C
A two stage cascade refrigeration system uses R-12 in the high pressure loop with a condenser temperature of 300C and -100C in the cascade condenser, and R-22 in the low pressure loop with a temperature in the cascade condenser of 00C and an evaporator temperature of -30 0C. Given that, h6 = 366 kJ/kg; h2= 421 kJ/kg. Determine the amount of ice (kg)for a 10 hrs operation if the initial temp of water is 31 0C to ice at --80C
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
- A two stage cascade refrigeration system uses R-12 in the high pressure loop with a condenser temperature of 300C and -100C in the cascade condenser, and R-22 in the low pressure loop with a temperature in the cascade condenser of 00C and an evaporator temperature of -30 0C. Given that, h6 = 366 kJ/kg; h2= 421 kJ/kg. Determine the amount of ice (kg)for a 10 hrs operation if the initial temp of water is 31 0C to ice at --80C. ANSWER: 7358.9169 kg
- A two stage cascade refrigeration system uses R-11 as the working substance. The evaporator is at -30 0C and the high pressure condenser is at 300C. The cascade condenser is a direct contact type. The refrigeration load is 24 tons. Given that, h2 = 393 kJ/kg; h6 = 408 kJ/kg. Determine the ff:
a.) amount ofwater for a 10 hrs operation if the initial temp of water is 34 0C to 20C.
ANSWER: 22656.8019kg
b.) amount of cooling water needed for a temp rise of 130C.
ANSWER: 1.9446
c.) heat rejected in the condenser. ANSWER: 105.9228 kw
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY