A three-phase A-connected generator has an inter- nal impedance of 9 + j90 mN/4. When the load is removed from the generator, the magnitude of the terminal voltage is 13,800 V. The generator feeds a A-connected load through a transmission line with an impedance of 20 + j180 mN/4. The per-phase impedance of the load is 7.056 + j3.417 N. a) Construct a single-phase equivalent circuit. b) Calculate the magnitude of the line current.
Short Transmission Line
A short transmission line is a transmission line that has a length less than 80 kilometers, an operating voltage level of less than 20 kV, and zero capacitance effect.
Power Flow Analysis
Power flow analysis is a topic in power engineering. It is the flow of electric power in a system. The power flow analysis is preliminary used for the various components of Alternating Current (AC) power, such as the voltage, current, real power, reactive power, and voltage angles under given load conditions and is often known as a load flow study or load flow analysis.
Complex Form
A power system is defined as the connection or network of the various components that convert the non-electrical energy into the electric form and supply the electric form of energy from the source to the load. The power system is an important parameter in power engineering and the electrical engineering profession. The powers in the power system are primarily categorized into two types- active power and reactive power.
![A three-phase A-connected generator has an inter-
nal impedance of 9 + j90 m2/þ. When the load is
removed from the generator, the magnitude of the
terminal voltage is 13,800 V. The generator feeds a
A-connected load through a transmission line with
an impedance of 20 + j180 m2/þ. The per-phase
impedance of the load is 7.056 + j3.417 N.
a) Construct a single-phase equivalent circuit.
b) Calculate the magnitude of the line current.
c) Calculate the magnitude of the line voltage at
the terminals of the load.
d) Calculate the magnitude of the line voltage at
the terminals of the source.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3cd14389-5a40-445b-ad9a-250fa860cf63%2Fec5a6511-d359-4069-9d7a-ac5339d4ab22%2F6wd7dyd_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)