A three-dimensional harmonic oscillator of mass m has the potential energy zmw*x² +mw*y² +mwžz² where w, = 2w a. Write its general eigenvalues and eigenfunctions b. Determine the eigenvalues and their degeneracies up to the 4th excited state c. The oscillator is initially equally likely found in the ground, first and second excited states and is also equally likely found among the states of the degenerate levels. Calculate the expectation values of the product xyz at time t
A three-dimensional harmonic oscillator of mass m has the potential energy zmw*x² +mw*y² +mwžz² where w, = 2w a. Write its general eigenvalues and eigenfunctions b. Determine the eigenvalues and their degeneracies up to the 4th excited state c. The oscillator is initially equally likely found in the ground, first and second excited states and is also equally likely found among the states of the degenerate levels. Calculate the expectation values of the product xyz at time t
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps