a) The Radiator department also wants to use the software to study fluid pressure inside the radiator of the car and, have requested you to validate the software. The rate of change of the pressure (F(t)) at any instant of time is proportional to the difference between the pressure of the liquid and a reference value as following: dF -=-(F – P/Q) dt Jse Q=65 and P=5 values. The pressure is found to be F = 1000 when t= 1 sec. where t= time in seconds.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
Task3
a) The Radiator department also wants to use the software to study fluid pressure inside the radiator
of the car and, have requested you to validate the software. The rate of change of the pressure
(F(t)) at any instant of time is proportional to the difference between the pressure of the liquid
and a reference value as following:
dF
:-(F – P/Q)
dt
Use Q=65 and P=5 values. The pressure is found to be F = 1000 when t= 1 sec.
where t = time in seconds.
Derive an equation to predict the pressure of the fluid flows in the radiator at any given time, assuming
that at all times F >_P
Also find the pressure at time t = 100 s.
b) The same department also investigates problem associated with the relationship between the
velocity of the pressing the pedal and the rate of change of that velocity. So you were asked to
validate the software using the growth equation given by:
dv
= Pv
-
dt
Where v(t) is the velocity of the pedal at time = t in seconds and P=5.
Derive an equation for the velocity of the pedal given that at the beginning (t=5 sec), the velocity is 10
m/s, assuming that at all times v(t) > 0.
Find the value of the velocity at t=10 seconds.
Transcribed Image Text:Task3 a) The Radiator department also wants to use the software to study fluid pressure inside the radiator of the car and, have requested you to validate the software. The rate of change of the pressure (F(t)) at any instant of time is proportional to the difference between the pressure of the liquid and a reference value as following: dF :-(F – P/Q) dt Use Q=65 and P=5 values. The pressure is found to be F = 1000 when t= 1 sec. where t = time in seconds. Derive an equation to predict the pressure of the fluid flows in the radiator at any given time, assuming that at all times F >_P Also find the pressure at time t = 100 s. b) The same department also investigates problem associated with the relationship between the velocity of the pressing the pedal and the rate of change of that velocity. So you were asked to validate the software using the growth equation given by: dv = Pv - dt Where v(t) is the velocity of the pedal at time = t in seconds and P=5. Derive an equation for the velocity of the pedal given that at the beginning (t=5 sec), the velocity is 10 m/s, assuming that at all times v(t) > 0. Find the value of the velocity at t=10 seconds.
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Fluid Pressure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON