(a) Suppose n= 6 and the sample correlation coefficient is r= 0.892. Is r significant at the 1% level of significance (based on a two-tailed test)? (Round your answers to three decimal places.) critical t Conclusion: O Yes, the correlation coefficient p is significantly different from 0 at the 0.01 level of significance. O No, the correlation coefficient p is not significantly different from 0 at the 0.01 level of significance. (b) Suppose n 10 and the sample correlation coefficient is r- 0.892. Is r significant at the 1% level of significance (based on a two-tailed test)? (Round your answers to three decimal places.) t- critical t Conclusion: O Yes, the correlation coefficient p is significantly different from 0 at the 0.01 level of significance. O No, the correlation coefficient p is not significantly different from 0 at the 0.01 level of significance. important role in determining the significance of a correlation coefficient? Explai (c) Explain why the test results of parts (a) and (b) are different even though the sample correlation coefficient r= 0.892 is the same in both parts. Does it appear that sample size plays O As n increases, so do the degrees of freedom, and the test statistic. This produces a smaller P value. O As n increases, the degrees of freedom and the test statistic decrease. This produces a smaller P value. O As n decreases, the degrees of freedom and the test statistic increase. This produces a smaller P value. O As n increases, so do the degrees freedom, and the test statistic. This produces a larger P value.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
### Correlation Significance Testing

#### (a) Testing for Significance with Sample Size \( n = 6 \)

Given:
- Sample correlation coefficient \( r = 0.892 \)

Question: Is \( r \) significant at the 1% level of significance (two-tailed test)?

- Critical \( t = \) [Input required]

**Conclusion Options:**
- Yes, the correlation coefficient \( \rho \) is significantly different from 0 at the 0.01 level of significance.
- No, the correlation coefficient \( \rho \) is not significantly different from 0 at the 0.01 level of significance.

---

#### (b) Testing for Significance with Sample Size \( n = 10 \)

Given:
- Sample correlation coefficient \( r = 0.892 \)

Question: Is \( r \) significant at the 1% level of significance (two-tailed test)?

- Critical \( t = \) [Input required]

**Conclusion Options:**
- Yes, the correlation coefficient \( \rho \) is significantly different from 0 at the 0.01 level of significance.
- No, the correlation coefficient \( \rho \) is not significantly different from 0 at the 0.01 level of significance.

---

#### (c) Effect of Sample Size on Test Results

Question: Why are the test results of parts (a) and (b) different despite having the same sample correlation coefficient \( r = 0.892 \)? 

Does sample size play an important role in determining the significance of a correlation coefficient? Explain.

**Options:**
- As \( n \) increases, so do the degrees of freedom, and the test statistic. This produces a smaller \( P \) value.
- As \( n \) increases, the degrees of freedom and the test statistic decrease. This produces a smaller \( P \) value.
- As \( n \) decreases, the degrees of freedom and the test statistic increase. This produces a smaller \( P \) value.
- As \( n \) increases, so do the degrees of freedom, and the test statistic. This produces a larger \( P \) value.

---

### Explanation

- **Graph/Diagram Explanation:**
  No graphs or diagrams are present in the content provided to describe. It is focused on textual analysis of correlation significance testing.
Transcribed Image Text:### Correlation Significance Testing #### (a) Testing for Significance with Sample Size \( n = 6 \) Given: - Sample correlation coefficient \( r = 0.892 \) Question: Is \( r \) significant at the 1% level of significance (two-tailed test)? - Critical \( t = \) [Input required] **Conclusion Options:** - Yes, the correlation coefficient \( \rho \) is significantly different from 0 at the 0.01 level of significance. - No, the correlation coefficient \( \rho \) is not significantly different from 0 at the 0.01 level of significance. --- #### (b) Testing for Significance with Sample Size \( n = 10 \) Given: - Sample correlation coefficient \( r = 0.892 \) Question: Is \( r \) significant at the 1% level of significance (two-tailed test)? - Critical \( t = \) [Input required] **Conclusion Options:** - Yes, the correlation coefficient \( \rho \) is significantly different from 0 at the 0.01 level of significance. - No, the correlation coefficient \( \rho \) is not significantly different from 0 at the 0.01 level of significance. --- #### (c) Effect of Sample Size on Test Results Question: Why are the test results of parts (a) and (b) different despite having the same sample correlation coefficient \( r = 0.892 \)? Does sample size play an important role in determining the significance of a correlation coefficient? Explain. **Options:** - As \( n \) increases, so do the degrees of freedom, and the test statistic. This produces a smaller \( P \) value. - As \( n \) increases, the degrees of freedom and the test statistic decrease. This produces a smaller \( P \) value. - As \( n \) decreases, the degrees of freedom and the test statistic increase. This produces a smaller \( P \) value. - As \( n \) increases, so do the degrees of freedom, and the test statistic. This produces a larger \( P \) value. --- ### Explanation - **Graph/Diagram Explanation:** No graphs or diagrams are present in the content provided to describe. It is focused on textual analysis of correlation significance testing.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman