A student constructs a voltaic cell to study the reaction between M(s) and X(s) and their ions. A diagram of the cell is shown above. The student uses 1.0 M solutions of M2+ and X3+ as well as solid electrodes of M(s) and X(s). The reduction reactions of M2+ and X3+ are shown below. The student connects the voltaic cell and measures the voltage produced. What is the net-ionic equation for the reaction that takes place in the voltaic cell?

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
100%

A student constructs a voltaic cell to study the reaction between M(s) and X(s) and their ions. A diagram of the cell is shown above. The student uses 1.0 M solutions of M2+ and X3+ as well as solid electrodes of M(s) and X(s). The reduction reactions of M2+ and X3+ are shown below.

The student connects the voltaic cell and measures the voltage produced.

  • What is the net-ionic equation for the reaction that takes place in the voltaic cell?
Voltmeter
|(s)
salt bridge
1.0 M (aq)
1.0 M (aq)
Anode
Cathode
A student constructs a voltaic cell to study the reaction between M(s) and X(s) and their ions. A diagram of the cell is shown
above. The student uses 1.0 M solutions of MF* and X** as well as solid electrodes of M(s) and X(s). The reduction
reactions of M* and X* are shown below.
Reduction reaction
Standard Reduction Potential (V)
M + 2 e - M(s)
-0.35
X* + 3 e - X(s)
+1.80
The student connects the voltaic cell and measures the voltage produced.
Transcribed Image Text:Voltmeter |(s) salt bridge 1.0 M (aq) 1.0 M (aq) Anode Cathode A student constructs a voltaic cell to study the reaction between M(s) and X(s) and their ions. A diagram of the cell is shown above. The student uses 1.0 M solutions of MF* and X** as well as solid electrodes of M(s) and X(s). The reduction reactions of M* and X* are shown below. Reduction reaction Standard Reduction Potential (V) M + 2 e - M(s) -0.35 X* + 3 e - X(s) +1.80 The student connects the voltaic cell and measures the voltage produced.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Electrolysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY