A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips. a. Determine the tensile stresses at yield and at fracture. b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length. Step-by-step solution: Step 1 of 4 Given that: Width of the specimen, b = 1 in Thickness of the specimen, t = 0.25 in Yield load on the specimen, Py = 12.5 kips Fracture load on the specimen, Pf = 17.5 kips Gauge length, L = 2 in Percentage of yield stress = 60%
A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips. a. Determine the tensile stresses at yield and at fracture. b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length. Step-by-step solution: Step 1 of 4 Given that: Width of the specimen, b = 1 in Thickness of the specimen, t = 0.25 in Yield load on the specimen, Py = 12.5 kips Fracture load on the specimen, Pf = 17.5 kips Gauge length, L = 2 in Percentage of yield stress = 60%
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of
12.5 kips and fractured at 17.5 kips.
a. Determine the tensile stresses at yield and at fracture.
b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length.
Step-by-step solution:
Step 1 of 4
Given that:
Width of the specimen, b = 1 in
Thickness of the specimen, t = 0.25 in
Yield load on the specimen, Py = 12.5 kips
Fracture load on the specimen, Pf = 17.5 kips
Gauge length, L = 2 in
Percentage of yield stress = 60%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning