A sport psychologist wanted to test the extent to which daily intake of fat in grams, and amount of exercise (in minutes) can predict health m=(measured using a Body mass index {BMI} scale in which higher scores indicate poorer health. Using the da1ta below: Fat (grams)​​ . Exercise (minutes).    ​Health (BMI) 8​.                    ​​34​​.                               ​32 11​​.                    ​10​.                               ​​34 5​​.                     ​50​​​.                               23 9​​​.                     15​​​.                               33 8​.                     ​​35​​​.                               28 5​​​.                     40​.                               ​​27 6​​​.                     20​​.                               ​25 4 ​​​.                    60​​.                               ​22   -the psychologist concluded exercise did not provide any additional information because a.) R2 = .923 b.) Adjusted R2 =.853 c.) B= -.017 d.) F change = .045; p>.05   -The linear equation resulting from this is (hint: let SPSS make the decision) a.) Ŷ= 1.670X1 + (-.017)X2 + 16.89 b.) Ŷ= (1.775)X1 + (1.670)X2 + 16.89 c.) Ŷ= .923X1 + (-.789)X2 + 16.89 d.) Ŷ= 16.89X1 + (-.017+1.670)X2   -Did doing exercise provide significantly to the health of the athletes?  Provide the regression statistics that show the effect of exercise beyond the effect of body fat.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

A sport psychologist wanted to test the extent to which daily intake of fat in grams, and amount of exercise (in minutes) can predict health m=(measured using a Body mass index {BMI} scale in which higher scores indicate poorer health. Using the da1ta below:

Fat (grams)​​ . Exercise (minutes).    ​Health (BMI)

8​.                    ​​34​​.                               ​32

11​​.                    ​10​.                               ​​34

5​​.                     ​50​​​.                               23

9​​​.                     15​​​.                               33

8​.                     ​​35​​​.                               28

5​​​.                     40​.                               ​​27

6​​​.                     20​​.                               ​25

4 ​​​.                    60​​.                               ​22

 

-the psychologist concluded exercise did not provide any additional information because
a.) R2 = .923
b.) Adjusted R2 =.853
c.) B= -.017
d.) F change = .045; p>.05

 

-The linear equation resulting from this is (hint: let SPSS make the decision)
a.) Ŷ= 1.670X1 + (-.017)X2 + 16.89
b.) Ŷ= (1.775)X1 + (1.670)X2 + 16.89
c.) Ŷ= .923X1 + (-.789)X2 + 16.89
d.) Ŷ= 16.89X1 + (-.017+1.670)X2

 

-Did doing exercise provide significantly to the health of the athletes?  Provide the regression statistics that show the effect of exercise beyond the effect of body fat.
### Correlations Table:

- **Variables:** Health, Fat, Exercise.
- **Pearson Correlation:**
  - Health & Fat: 0.923
  - Health & Exercise: -0.789
  - Fat & Exercise: -0.833
- **Significance (1-tailed):**
  - Health with Fat: 0.001
  - Health with Exercise: 0.010
  - Fat with Exercise: 0.005
- **Sample Size (N):** 8 for all variables.

### Variables Entered/Removed:

- **Model 1:**
  - Variables Entered: Fat
- **Model 2:**
  - Variables Entered: Exercise
- **Dependent Variable:** Health

### Model Summary:

- **Model 1:**
  - R: 0.923, R Square: 0.852, Adjusted R Square: 0.827
  - Std. Error of Estimate: 1.914
  - F Change: 34.410, Significance of F Change: 0.001
- **Model 2:**
  - R: 0.923, R Square: 0.853, Adjusted R Square: 0.794
  - Std. Error of Estimate: 2.087
  - F Change: 0.045, Significance of F Change: 0.840
- **Predictors:** Fat, Exercise

### ANOVA Table:

- **Model 1:**
  - Regression Sum of Squares: 126.025
  - Mean Square: 126.025
  - F: 34.410, Significance: 0.001
- **Model 2:**
  - Regression Sum of Squares: 126.221
  - Mean Square: 63.111
  - F: 14.489, Significance: 0.008

### Coefficients Table:

- **Model 1:**
  - Constant: B = 15.575, Std. Error = 2.224
  - Fat: B = 1.775, Std. Error = 0.303, Beta = 0.923, t = 5.866, Sig. = 0.001
- **Model 2:**
  - Constant: B = 16.889, Std. Error =
Transcribed Image Text:### Correlations Table: - **Variables:** Health, Fat, Exercise. - **Pearson Correlation:** - Health & Fat: 0.923 - Health & Exercise: -0.789 - Fat & Exercise: -0.833 - **Significance (1-tailed):** - Health with Fat: 0.001 - Health with Exercise: 0.010 - Fat with Exercise: 0.005 - **Sample Size (N):** 8 for all variables. ### Variables Entered/Removed: - **Model 1:** - Variables Entered: Fat - **Model 2:** - Variables Entered: Exercise - **Dependent Variable:** Health ### Model Summary: - **Model 1:** - R: 0.923, R Square: 0.852, Adjusted R Square: 0.827 - Std. Error of Estimate: 1.914 - F Change: 34.410, Significance of F Change: 0.001 - **Model 2:** - R: 0.923, R Square: 0.853, Adjusted R Square: 0.794 - Std. Error of Estimate: 2.087 - F Change: 0.045, Significance of F Change: 0.840 - **Predictors:** Fat, Exercise ### ANOVA Table: - **Model 1:** - Regression Sum of Squares: 126.025 - Mean Square: 126.025 - F: 34.410, Significance: 0.001 - **Model 2:** - Regression Sum of Squares: 126.221 - Mean Square: 63.111 - F: 14.489, Significance: 0.008 ### Coefficients Table: - **Model 1:** - Constant: B = 15.575, Std. Error = 2.224 - Fat: B = 1.775, Std. Error = 0.303, Beta = 0.923, t = 5.866, Sig. = 0.001 - **Model 2:** - Constant: B = 16.889, Std. Error =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Types of Data and Their Measurement
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman