A solid bar having a diameter of 160 mm is to be replaced by a rectangular tube having cross- sectional area of 150 mm x 310 mm to the median line of the cross-section. (a) Determine the required thickness of the tube so that the maximum shear stress in the tube will not exceed the maximum shear stress in the solid bar. (b) Determine the shear stress in the tube. If it is subjected to a torque T = 15 kN-m and a thickness of 10 mm. and (c) Determine the angle of twist in degrees of the tube if the length of the tube is 1000 mm and the shear modulus is 75 GPa. Thickness of the tube is 10 mm and the torque T = 15 kN-m.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
icon
Concept explainers
Question
3. A solid bar having a diameter of 160 mm is to be replaced by a rectangular tube having cross-
sectional area of 150 mm x 310 mm to the median line of the cross-section. (a) Determine the
required thickness of the tube so that the maximum shear stress in the tube will not exceed the
maximum shear stress in the solid bar. (b) Determine the shear stress in the tube . If it is
subjected to a torque T = 15 kN-m and a thickness of 10 mm. and (c) Determine the angle of
twist in degrees of the tube if the length of the tube is 1000 mm and the shear modulus is 75
GPa. Thickness of the tube is 10 mm and the torque T = 15 kN-m.
Transcribed Image Text:3. A solid bar having a diameter of 160 mm is to be replaced by a rectangular tube having cross- sectional area of 150 mm x 310 mm to the median line of the cross-section. (a) Determine the required thickness of the tube so that the maximum shear stress in the tube will not exceed the maximum shear stress in the solid bar. (b) Determine the shear stress in the tube . If it is subjected to a torque T = 15 kN-m and a thickness of 10 mm. and (c) Determine the angle of twist in degrees of the tube if the length of the tube is 1000 mm and the shear modulus is 75 GPa. Thickness of the tube is 10 mm and the torque T = 15 kN-m.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Combined Loading
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY