A solenoid has radius 5.80 mm, length 11.0 cm, 5000 turns, and is placed with its axis of symmetry along the x-axis, through the origin. A vector normal to the opening of the solenoid points to the right. We measure the resistance of the solenoid to be 14.0 Ω. The solenoid is in a region where the temperature is 49.0°C and initially, there is an external magnetic field of 0.30 T in the +x direction. Then the magnetic field is turned off and drops to 0 T over 50.0 milliseconds a. What is the magnitude of the average induced emf during the 50.0 milliseconds while the magnetic field magnitude decreases to 0? b. What is the direction of the induced current, as viewed from the right? Answer clockwise, counterclockwise, or zero and show work or explain in words. c. What is the magnitude of the induced current? d. What is the magnitude and direction of the induced magnetic field?
. A solenoid has radius 5.80 mm, length 11.0 cm, 5000 turns, and is placed with its axis of symmetry along the x-axis, through the origin. A vector normal to the opening of the solenoid points to the right. We measure the resistance of the solenoid to be 14.0 Ω. The solenoid is in a region where the temperature is 49.0°C and initially, there is an external magnetic field of 0.30 T in the +x direction. Then the magnetic field is turned off and drops to 0 T over 50.0 milliseconds
a. What is the magnitude of the average induced emf during the 50.0 milliseconds while the magnetic field magnitude decreases to 0?
b. What is the direction of the induced current, as viewed from the right? Answer clockwise, counterclockwise, or zero and show work or explain in words.
c. What is the magnitude of the induced current?
d. What is the magnitude and direction of the induced magnetic field?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images