A silica TLC plate is developed in a mixture of solvent system/mobile phase. The solvent travels 30 mm up the plate Analyte #1 travels 9 mm up the plate Analyte #2 travels 16 mm up the plate Which analyte is more polar, and what is its Rf? Analyte #1, Rf = 0.53 Analyte #2, Rf = 0.53 Analyte #2, Rf = 0.3 Analyte #1, Rf = 0.3

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
A silica TLC plate is developed in a mixture of solvent system/mobile phase.

- The solvent travels 30 mm up the plate.
- Analyte #1 travels 9 mm up the plate.
- Analyte #2 travels 16 mm up the plate.

**Question**: Which analyte is more polar, and what is its Rf?

**Options**:
- ○ Analyte #1, Rf = 0.53
- ○ Analyte #2, Rf = 0.53
- ○ Analyte #2, Rf = 0.3
- ○ Analyte #1, Rf = 0.3

**Explanation**: 
The retention factor (Rf) is calculated by dividing the distance traveled by the analyte by the distance traveled by the solvent. Analyte #1 is more polar if it travels less distance since polar compounds tend to have lower Rf values on a polar stationary phase like silica gel. 

For Analyte #1:
- Rf = 9 mm / 30 mm = 0.3

For Analyte #2:
- Rf = 16 mm / 30 mm = 0.53

Thus, Analyte #1 is more polar, with an Rf of 0.3.
Transcribed Image Text:A silica TLC plate is developed in a mixture of solvent system/mobile phase. - The solvent travels 30 mm up the plate. - Analyte #1 travels 9 mm up the plate. - Analyte #2 travels 16 mm up the plate. **Question**: Which analyte is more polar, and what is its Rf? **Options**: - ○ Analyte #1, Rf = 0.53 - ○ Analyte #2, Rf = 0.53 - ○ Analyte #2, Rf = 0.3 - ○ Analyte #1, Rf = 0.3 **Explanation**: The retention factor (Rf) is calculated by dividing the distance traveled by the analyte by the distance traveled by the solvent. Analyte #1 is more polar if it travels less distance since polar compounds tend to have lower Rf values on a polar stationary phase like silica gel. For Analyte #1: - Rf = 9 mm / 30 mm = 0.3 For Analyte #2: - Rf = 16 mm / 30 mm = 0.53 Thus, Analyte #1 is more polar, with an Rf of 0.3.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Analytical Separations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY