A section of uniform pipe is bent into an upright U shape and partially filled with water, which can then oscillate back and forth in simple harmonic motion. The inner radius of the pipe is r = 0.024 m. The radius of curvature of the curved part of the U is R = 0.23 m. When the water is not oscillating, the depth of the water in the straight sections is d = 0.37 m. Enter an expression for the mass of water in the tube, in terms of the defined quantities and the density of water, ρ. Use the approximation r << R.  Calculate the mass of the water, in kilograms. Take ρ = 1000 kg/m3.   Enter an expression for the force constant of the U-shaped column of water when displaced from equilibrium, in terms of the defined quantities, ρ, and g. This constant is analogous to the spring constant in Hooke’s law.   Find the value of the force constant, in newtons per meter. Take ρ = 1000 kg/m3 and g = 9.81 m/s2.  Calculate the period of oscillation, in seconds.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question

 A section of uniform pipe is bent into an upright U shape and partially filled with water, which can then oscillate back and forth in simple harmonic motion. The inner radius of the pipe is r = 0.024 m. The radius of curvature of the curved part of the U is R = 0.23 m. When the water is not oscillating, the depth of the water in the straight sections is d = 0.37 m.

Enter an expression for the mass of water in the tube, in terms of the defined quantities and the density of water, ρ. Use the approximation r << R

Calculate the mass of the water, in kilograms. Take ρ = 1000 kg/m3

 Enter an expression for the force constant of the U-shaped column of water when displaced from equilibrium, in terms of the defined quantities, ρ, and g. This constant is analogous to the spring constant in Hooke’s law. 

 Find the value of the force constant, in newtons per meter. Take ρ = 1000 kg/m3 and g = 9.81 m/s2

Calculate the period of oscillation, in seconds. 

d
R
Transcribed Image Text:d R
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Fluid Pressure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON