a saturated steam is to be condensed at temperature of 50 °C to produce a saturated water. The cooling water is drawn from a nearby river and enters the tubes of the condenser at 18 °C and leaves it at 37 °C. The tubes of the condenser are thin of a diameter 15 mm and 5 m long and their number is 773 tubes. Determine the efficiency of the condenser, cooling water flow rate (kg/s), and steam flow rate (kg/s) considering the following date: h,(water side) = 5000w Im.K h, = (steam side) = 60000 W I m².K; R-R = 0.0001 m."C/W Answer (59.37%,115.576kg/s,3.87 kg/s).
a saturated steam is to be condensed at temperature of 50 °C to produce a saturated water. The cooling water is drawn from a nearby river and enters the tubes of the condenser at 18 °C and leaves it at 37 °C. The tubes of the condenser are thin of a diameter 15 mm and 5 m long and their number is 773 tubes. Determine the efficiency of the condenser, cooling water flow rate (kg/s), and steam flow rate (kg/s) considering the following date: h,(water side) = 5000w Im.K h, = (steam side) = 60000 W I m².K; R-R = 0.0001 m."C/W Answer (59.37%,115.576kg/s,3.87 kg/s).
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![a saturated steam is to be condensed at temperature of 50 °C to produce a saturated water. The cooling
water is drawn from a nearby river and enters the tubes of the condenser at 18 °C and leaves it at 37 °C. The
tubes of the condenser are thin of a diameter 15 mm and 5 m long and their number is 773 tubes. Determine
the efficiency of the condenser, cooling water flow rate (kg/s), and steam flow rate (kg/s) considering the
following date: , (water side) = 5000W I m².K ;h. = (steam side) = 60000 W / m².K ;R, =R,, =0.0001 m:CIW
Answer (59.37%,115.576kg/s,3.87 kg/s).
%3D](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1cb128fc-c4a1-402c-9fe0-38bba98c2004%2F7563efe2-31fe-40fa-a63c-ac5efe777a1a%2F5qxjrl_processed.jpeg&w=3840&q=75)
Transcribed Image Text:a saturated steam is to be condensed at temperature of 50 °C to produce a saturated water. The cooling
water is drawn from a nearby river and enters the tubes of the condenser at 18 °C and leaves it at 37 °C. The
tubes of the condenser are thin of a diameter 15 mm and 5 m long and their number is 773 tubes. Determine
the efficiency of the condenser, cooling water flow rate (kg/s), and steam flow rate (kg/s) considering the
following date: , (water side) = 5000W I m².K ;h. = (steam side) = 60000 W / m².K ;R, =R,, =0.0001 m:CIW
Answer (59.37%,115.576kg/s,3.87 kg/s).
%3D
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY