A rhinoceros is at the origin of coordinates at time t1 = 0. For the time interval from t1 to t2 = 11.0 s, the rhino's average velocity has x-component - 4.20 m/s and y-component 5.10 m/s. a. At time t2 = 11.0 s what is the x-coordinate of the rhino? b. At time t2 = 11.0 s what is the y-coordinate of the rhino? c. How far is the rhino from the origin?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A rhinoceros is at the origin of coordinates at time t1 = 0. For the time interval from t1 to t2 = 11.0 s, the rhino's average velocity has x-component - 4.20 m/s and y-component 5.10 m/s.
a. At time t2 = 11.0 s what is the x-coordinate of the rhino?
b. At time t2 = 11.0 s what is the y-coordinate of the rhino?
c. How far is the rhino from the origin?
Step by step
Solved in 2 steps with 1 images