A swimmer bounces almost straight up from a diving board and falls vertically feet first into a pool. She starts with a speed of 3.4 m/s and her takeoff point is 1.9 m above the pool's surface. a. For how long are her feet in the air , in seconds? here is my ans. 0.34? b. What is the height above the board, in meters, of her highest point? c. What is her velocity , in meters per second, when her feet hit the water? assume the vertical component is positive upwards.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A swimmer bounces almost straight up from a diving board and falls vertically feet first into a pool. She starts with a speed of 3.4 m/s and her takeoff point is 1.9 m above the pool's surface.
a. For how long are her feet in the air , in seconds? here is my ans. 0.34?
b. What is the height above the board, in meters, of her highest point?
c. What is her velocity , in meters per second, when her feet hit the water? assume the vertical component is positive upwards.
Step by step
Solved in 5 steps with 1 images
(c) velocity when her feet hit the water v= 6.98 m/s.
It says that this isnt right .