A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. The mean braking distance for SUVs equipped with tires made with compound 1 is 74 feet, with a population standard deviation of 12.9. The mean braking distance for SUVs equipped with tires made with compound 2 is 77 feet, with a population standard deviation of 5.6. Suppose that a sample of 61 braking tests are performed for each compound. Using these results, test the claim that the braking distance for SUVs equipped with tires using compound 1 is shorter than the braking distance when compound 2 is used. Let μ1�1 be the true mean braking distance corresponding to compound 1 and μ2 be the true mean braking distance corresponding to compound 2. Use the 0.05 level of significance. Step 3 of 5 : Find the p-value associated with the test statistic. Round your answer to four decimal places.
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. The
Find the p-value associated with the test statistic. Round your answer to four decimal places.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 21 images